1
|
Granger SJ, Upadhayay HR, Collins AL. Hydro-chemical responses at different scales in a rural catchment, UK, and implications for managing the unintended consequences of agriculture. ENVIRONMENTAL RESEARCH 2023; 228:115826. [PMID: 37011801 DOI: 10.1016/j.envres.2023.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Diffuse pollutant transfers from agricultural land often constitute the bulk of annual loads in catchments and storm events dominate these fluxes. There remains a lack of understanding of how pollutants move through catchments at different scales. This is critical if the mismatch between the scales used to implement on-farm management strategies, compared to those used for assessment of environmental quality, is to be addressed. The aim of this study was to understand how the mechanisms of pollutant export may change when assessed at different scales and the corresponding implications for on-farm management strategies. A study was conducted within a 41 km2 catchment containing 3 nested sub-catchments, instrumented to monitor discharge and various water quality parameters. Storm data over a 24-month period were analysed and hysteresis (HI) and flushing (FI) indices calculated for two water quality variables that are typically of environmental significance; NO3-N and suspended sediment (SSC). For SSC, increasing spatial scale had little effect on the mechanistic interpretation of mobilisation and the associated on-farm management strategies. At the three smallest scales NO3-N was chemodynamic with the interpretation of dominant mechanisms changing seasonally. At these scales, the same on-farm management strategies would be recommended. However, at the largest scale, NO3-N appeared unaffected by season and chemostatic. This would lead to a potentially very different interpretation and subsequent on-farm measures. The results presented here underscore the benefits of nested monitoring for extracting mechanistic understanding of agricultural impacts on water quality. The application of HI and FI indicates that monitoring at smaller scales is crucial. At large scales, the complexity of the catchment hydrochemical response means that mechanisms become obscured. Smaller catchments more likely represent critical areas within larger catchments where mechanistic understanding can be extracted from water quality monitoring and used to underpin the selection of on-farm mitigation measures.
Collapse
Affiliation(s)
- S J Granger
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom.
| | - H R Upadhayay
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom
| | - A L Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom
| |
Collapse
|
2
|
Bieroza M, Acharya S, Benisch J, ter Borg RN, Hallberg L, Negri C, Pruitt A, Pucher M, Saavedra F, Staniszewska K, van’t Veen SGM, Vincent A, Winter C, Basu NB, Jarvie HP, Kirchner JW. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4701-4719. [PMID: 36912874 PMCID: PMC10061935 DOI: 10.1021/acs.est.2c07798] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Suman Acharya
- Department
of Environment and Genetics, School of Agriculture, Biomedicine and
Environment, La Trobe University, Albury/Wodonga Campus, Victoria 3690, Australia
| | - Jakob Benisch
- Institute
for Urban Water Management, TU Dresden, Bergstrasse 66, Dresden 01068, Germany
| | | | - Lukas Hallberg
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Camilla Negri
- Environment
Research Centre, Teagasc, Johnstown Castle, Wexford Y35 Y521, Ireland
- The
James
Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
- School
of
Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, United Kingdom
| | - Abagael Pruitt
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Matthias Pucher
- Institute
of Hydrobiology and Aquatic Ecosystem Management, Vienna University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, Vienna 1180, Austria
| | - Felipe Saavedra
- Department
for Catchment Hydrology, Helmholtz Centre
for Environmental Research - UFZ, Theodor-Lieser-Straße 4, Halle (Saale) 06120, Germany
| | - Kasia Staniszewska
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sofie G. M. van’t Veen
- Department
of Ecoscience, Aarhus University, Aarhus 8000, Denmark
- Envidan
A/S, Silkeborg 8600, Denmark
| | - Anna Vincent
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Carolin Winter
- Environmental
Hydrological Systems, University of Freiburg, Friedrichstraße 39, Freiburg 79098, Germany
- Department
of Hydrogeology, Helmholtz Centre for Environmental
Research - UFZ, Permoserstr.
15, Leipzig 04318, Germany
| | - Nandita B. Basu
- Department
of Civil and Environmental Engineering and Department of Earth and
Environmental Sciences, and Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Helen P. Jarvie
- Water Institute
and Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James W. Kirchner
- Department
of Environmental System Sciences, ETH Zurich, Zurich CH-8092, Switzerland
- Swiss
Federal Research Institute WSL, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
3
|
May H, Rixon S, Gardner S, Goel P, Levison J, Binns A. Investigating relationships between climate controls and nutrient flux in surface waters, sediments, and subsurface pathways in an agricultural clay catchment of the Great Lakes Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160979. [PMID: 36549520 DOI: 10.1016/j.scitotenv.2022.160979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Water quality within agricultural catchments is governed by management practices and climate conditions that control the transport, storage, and exchange of nutrients between components of the hydrologic cycle. This study aims to improve knowledge of nitrogen (N) and phosphorus (P) transport in low permeability agricultural watersheds by considering spatial and temporal trends of surface water nutrient concentrations in relation to hydroclimatic drivers, sediment quality, shallow hyporheic exchange, groundwater quality, and tile drain discharge over a 14-month field study in a clay hydrosystem of the Lake Huron basin, one of the five Great Lakes. Results found that events of varying magnitude and intensity enhanced nutrient release from overland flow and subsurface pathways. Tile drain discharge was found to be a consistent and elevated source of P and N to surface waters when flowing, mobilizing both diffuse nutrients from fertilizer application and legacy stores in the vadose zone. Surface water quality was temporally variable at the seasonal and event scale. Targeted sampling following fertilization periods, snowmelt, and moderate precipitation events revealed catchment wide elevated nutrient concentrations, emphasizing the need for targeted sampling regimes. Controls other than discharge magnitude and overland flow were found to contribute to peak nutrient concentrations, including internal nitrate loading, soil-snowmelt interaction, catchment wetness, and freeze thaw cycles. Sediments were found to store P in calcium minerals and have a high P storage capacity. Instream mechanisms such as sediment P fixation and hyporheic exchange may play a role in mediating surface water quality, but currently have no discernable benefit to year-round surface water nutrient concentrations. Best management practices need to focus on reducing sources of agricultural nutrients (e.g., field phosphorus concentrations and tile drain discharge loading) at the watershed scale to reduce nutrient concentrations and export in flashy clay catchments.
Collapse
Affiliation(s)
- Hannah May
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | - Sarah Rixon
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Scott Gardner
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Pradeep Goel
- Ministry of the Environment, Conservation and Parks (MECP), Etobicoke, Ontario, Canada
| | - Jana Levison
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Andrew Binns
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Chen YT, Crossman J. The impacts of biofouling on automated phosphorus analysers during long-term deployment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147188. [PMID: 33905920 DOI: 10.1016/j.scitotenv.2021.147188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In-situ nutrient analysers are a promising tool for improving the temporal resolution of data and filling knowledge gaps in drivers of harmful algal blooms. There are significant challenges however regarding instrument biofouling and data drift, which remain largely unquantified and unresolved. In this study the effects of biofouling on data consistency and accuracy is quantified on automated wet chemical analysers during long-term monitoring. In 2019 three fractions of phosphorus (P); total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP), were measured in-situ at four sites in Southern Ontario, Canada. The analysers were exposed to a wide range of P concentrations and biofouling extremes over an 8-month period. They were calibrated using chemical standards both in the field and the lab, and validated with fortnightly grab samples, and the representativeness of real-time data under a range of biofouling conditions were analysed. Results show that analysers biofouling during long-term deployment can desensitize instrument measurements, with greatest impacts on instruments operating in highly turbid environments. Temporal changes in calibration curves suggest that equilibrium P concentrations (EPC0) of sediments accumulating inside filters can elicit a rapid exchange of dissolved P (SRP, TDP) with the water sample. Data drift increases the further from the EPC0 an instrument is required to analyse, and thus this study demonstrates that for in-situ P monitoring, unless filters are frequently replaced or renovated, in-situ probes should ideally be dedicated to a specific waterbody type defined by similar EPC0 values. It is recommended that in order to ensure accuracy in in-situ monitoring of TP, TDP and SRP during long-term deployment, preliminary site trials should be conducted to ascertain sediment EPC0; the extent of biofouling should be monitored; and/or frequent grab samples taken for post-deployment validation. The findings apply to any in-situ phosphorus monitoring techniques for SRP or TDP.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Great Lakes Institute of Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Jill Crossman
- School of the Environment and Great Lakes Institute of Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
5
|
Mehdi B, Schürz C, Grath B, Schulz K. Storm event impacts on in-stream nitrate concentration and discharge dynamics: A comparison of high resolution in-situ measured data with model simulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143406. [PMID: 33203562 DOI: 10.1016/j.scitotenv.2020.143406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between nitrogen and discharge (N-Q) in a stream can be captured with high frequency nitrate nitrogen (NO3--N) samplers. In Austria, the Raab catchment (998 km2) has high frequency NO3--N data measured with a spectrometer probe. This study evaluated if the widely-used and typically calibrated eco-hydrological model Soil and Water Assessment Tool (SWAT) can reproduce the hysteresis loop direction and the dilution or accretion effects of NO3--N dynamics during storm events in this agricultural catchment. The daily aggregated NO3--N measurements were compared with the daily SWAT simulated discharge and NO3--N concentrations of 14 storm events by computing hysteresis indices - loop direction and area (h index), loop direction (HInew) and solute gradient (∆C). Overall, the SWAT model was able to replicate the predominant anticlockwise hysteresis and dilution effect of NO3--N in the Raab catchment. The loop direction was simulated correctly in 9 and 10 events, for the h and HInew indices, respectively. The hysteresis direction inferred from both indices did not always concur due to the differences in the calculation methods. The dilution or accretion effect was simulated correctly in 9 of the events. However, the SWAT model only correctly simulated the N-Q relationships for all three hysteresis criteria in 5 of the 14 events. Due to the aggregation of measured data to the daily time step, information pertaining to the hysteresis shape was sometimes lost, particularly if the storm event was <4 days in duration. Structural limitations of the SWAT as well as specific relevant basin parameters (parameters that have one value for the entire catchment) may restrict simulating N-Q dynamics. An enhanced calibrated and validated model would possibly improve the results, since the events during the better calibrated period more often reproduced the measured hysteresis indices.
Collapse
Affiliation(s)
- Bano Mehdi
- University of Natural Resources & Life Sciences, Vienna (BOKU), Department of Water-Atmosphere-Environment, Institute for Hydrology and Water Management, Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources & Life Sciences, Vienna (BOKU), Department of Crop Sciences, Institute of Agronomy, Konrad-Lorenz Str. 24, 3430 Tulln, Austria.
| | - Christoph Schürz
- University of Natural Resources & Life Sciences, Vienna (BOKU), Department of Water-Atmosphere-Environment, Institute for Hydrology and Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Benedikt Grath
- University of Natural Resources & Life Sciences, Vienna (BOKU), Department of Water-Atmosphere-Environment, Institute for Hydrology and Water Management, Muthgasse 18, 1190 Vienna, Austria
| | - Karsten Schulz
- University of Natural Resources & Life Sciences, Vienna (BOKU), Department of Water-Atmosphere-Environment, Institute for Hydrology and Water Management, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Cooper RJ, Hiscock KM, Lovett AA, Dugdale SJ, Sünnenberg G, Vrain E. Temporal hydrochemical dynamics of the River Wensum, UK: Observations from long-term high-resolution monitoring (2011-2018). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138253. [PMID: 32247122 DOI: 10.1016/j.scitotenv.2020.138253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In 2010, the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology whilst maintaining food production capacity. A central component of the DTC platform was the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution (30 min) empirical datasets of surface water, groundwater and meteorological parameters over a long period (2011-2018). Utilising 8.9 million water quality measurements generated for the River Wensum, this paper demonstrates how long-term, high-resolution monitoring of hydrochemistry can improve our understanding of the complex temporal dynamics of riverine processes from 30 min to annual timescales. This paper explores the impact of groundwater-surface water interactions on instream pollutant concentrations (principally nitrogen, phosphorus and turbidity) and reveals how varying hydrochemical associations under contrasting flow regimes can elicit important information on the dominant pollution pathways. Furthermore, this paper examines the relationships between agricultural pollutants and precipitation events of varying magnitude, whilst demonstrating how high-resolution data can be utilised to develop conceptual models of hydrochemical processes for contrasting winter and summer seasons. Finally, this paper considers how high-resolution hydrochemical data can be used to increase land manager awareness of environmentally damaging farming operations and encourage the adoption of more water sensitive land management practices.
Collapse
Affiliation(s)
- Richard J Cooper
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK.
| | - Kevin M Hiscock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Andrew A Lovett
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Stephen J Dugdale
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Gisela Sünnenberg
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Emilie Vrain
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| |
Collapse
|
7
|
Fones GR, Bakir A, Gray J, Mattingley L, Measham N, Knight P, Bowes MJ, Greenwood R, Mills GA. Using high-frequency phosphorus monitoring for water quality management: a case study of the upper River Itchen, UK. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:184. [PMID: 32072347 PMCID: PMC7028801 DOI: 10.1007/s10661-020-8138-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Increased concentrations of phosphorus (P) in riverine systems lead to eutrophication and can contribute to other environmental effects. Chalk rivers are known to be particularly sensitive to elevated P levels. We used high-frequency (daily) automatic water sampling at five distinct locations in the upper River Itchen (Hampshire, UK) between May 2016 and June 2017 to identify the main P species (including filterable reactive phosphorus, total filterable phosphorus, total phosphorus and total particulate phosphorus) present and how these varied temporally. Our filterable reactive phosphorus (considered the biologically available fraction) data were compared with the available Environment Agency total reactive phosphorus (TRP) values over the same sampling period. Over the trial, the profiles of the P fractions were complex; the major fraction was total particulate phosphorus with the mean percentage value ranging between 69 and 82% of the total P present. Sources were likely to be attributable to wash off from agricultural activities. At all sites, the FRP and Environment Agency TRP mean concentrations over the study were comparable. However, there were a number of extended time periods (1 to 2 weeks) where the mean FRP concentration (e.g. 0.62 mg L-1) exceeded the existing regulatory values (giving a poor ecological status) for this type of river. Often, these exceedances were missed by the limited regulatory monitoring procedures undertaken by the Environment Agency. There is evidence that these spikes of elevated concentrations of P may have a biological impact on benthic invertebrate (e.g. blue-winged olive mayfly) communities that exist in these ecologically sensitive chalk streams. Further research is required to assess the ecological impact of P and how this might have implications for the development of future environmental regulations.
Collapse
Affiliation(s)
- Gary R Fones
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK.
| | - Adil Bakir
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK
- Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 OHT, UK
| | - Janina Gray
- Salmon & Trout Conservation, The Granary, Manor Farm, Burcombe Lane, Salisbury, SP2 0EJ, UK
| | - Lauren Mattingley
- Salmon & Trout Conservation, The Granary, Manor Farm, Burcombe Lane, Salisbury, SP2 0EJ, UK
| | - Nick Measham
- Salmon & Trout Conservation, The Granary, Manor Farm, Burcombe Lane, Salisbury, SP2 0EJ, UK
| | - Paul Knight
- Salmon & Trout Conservation, The Granary, Manor Farm, Burcombe Lane, Salisbury, SP2 0EJ, UK
| | - Michael J Bowes
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Richard Greenwood
- School of Biological Sciences, University of Portsmouth, King Henry I Street, Portsmouth, Hampshire, PO1 2DY, UK
| | - Graham A Mills
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
8
|
Bieroza M, Bergström L, Ulén B, Djodjic F, Tonderski K, Heeb A, Svensson J, Malgeryd J. Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1314-1324. [PMID: 31589708 DOI: 10.2134/jeq2019.02.0063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combating eutrophication requires changes in land and water management in agricultural catchments and implementation of mitigation measures to reduce phosphorus (P), nitrogen (N) and suspended sediment (SS) losses. To date, such mitigation measures have been built in many agricultural catchments, but there is a lack of studies evaluating their effectiveness. Here we evaluated the effectiveness of mitigation measures in a clay soil-dominated headwater catchment by combining the evaluation of long-term and high-frequency data with punctual measurements upstream and downstream of three mitigation measures: lime-filter drains, a two-stage ditch, and a sedimentation pond. Long-term hydrochemical data at the catchment outlet showed a significant decrease in P (-15%) and SS (-28%) and an increase in nitrate nitrogen (NO-N, +13%) concentrations. High-frequency (hourly) measurements with a wet-chemistry analyzer (total and reactive P) and optical sensor (NO-N and SS) showed that the catchment is an abundant source of nutrients and sediments and that their transport is exacerbated by prolonged drought and resuspension of stream sediments during storm events. Lime-filter drains showed a decrease in SS by 76% and total P by 80% and an increase in NO-N by 45% compared with traditional drains, potentially indicating pollution swapping. The effectiveness of two-stage ditch and sedimentation pond was less evident and depended on the prevalent hydrometeorological conditions that drove the resuspension of bed sediments and associated sediment-bound P transport. These results suggest that increased frequency of prolonged drought due to changing weather patterns and resuspension of SS and sediment-bound P during storm events can override the generally positive effect of mitigation measures.
Collapse
|
9
|
Nightingale AM, Hassan SU, Warren BM, Makris K, Evans GWH, Papadopoulou E, Coleman S, Niu X. A Droplet Microfluidic-Based Sensor for Simultaneous in Situ Monitoring of Nitrate and Nitrite in Natural Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9677-9685. [PMID: 31352782 DOI: 10.1021/acs.est.9b01032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic-based chemical sensors take laboratory analytical protocols and miniaturize them into field-deployable systems for in situ monitoring of water chemistry. Here, we present a prototype nitrate/nitrite sensor based on droplet microfluidics that in contrast to standard (continuous phase) microfluidic sensors, treats water samples as discrete droplets contained within a flow of oil. The new sensor device can quantify the concentrations of nitrate and nitrite within each droplet and provides high measurement frequency and low fluid consumption. Reagent consumption is at a rate of 2.8 mL/day when measuring every ten seconds, orders of magnitude more efficient than those of the current state-of-the-art sensors. The sensor's capabilities were demonstrated during a three-week deployment in a tidal river. The accurate and high frequency data (6% error relative to spot samples, measuring at 0.1 Hz) elucidated the influence of tidal variation, rain events, diurnal effects, and anthropogenic input on concentrations at the deployment site. This droplet microfluidic-based sensor is suitable for a wide range of applications such as monitoring of rivers, lakes, coastal waters, and industrial effluents.
Collapse
Affiliation(s)
- Adrian M Nightingale
- Mechanical Engineering, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton , SO17 1BJ , United Kingdom
| | - Sammer-Ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton , SO17 1BJ , United Kingdom
| | - Brett M Warren
- SouthWestSensor Ltd , Enterprise House, Ocean Village , Southampton , SO14 3XB , United Kingdom
| | - Kyriacos Makris
- SouthWestSensor Ltd , Enterprise House, Ocean Village , Southampton , SO14 3XB , United Kingdom
| | - Gareth W H Evans
- Mechanical Engineering, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton , SO17 1BJ , United Kingdom
| | - Evanthia Papadopoulou
- SouthWestSensor Ltd , Enterprise House, Ocean Village , Southampton , SO14 3XB , United Kingdom
| | - Sharon Coleman
- Mechanical Engineering, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton , SO17 1BJ , United Kingdom
- SouthWestSensor Ltd , Enterprise House, Ocean Village , Southampton , SO14 3XB , United Kingdom
| | - Xize Niu
- Mechanical Engineering, Faculty of Engineering and Physical Sciences , University of Southampton , Southampton , SO17 1BJ , United Kingdom
- SouthWestSensor Ltd , Enterprise House, Ocean Village , Southampton , SO14 3XB , United Kingdom
| |
Collapse
|
10
|
Clinton-Bailey GS, Grand MM, Beaton AD, Nightingale AM, Owsianka DR, Slavik GJ, Connelly DP, Cardwell CL, Mowlem MC. A Lab-on-Chip Analyzer for in Situ Measurement of Soluble Reactive Phosphate: Improved Phosphate Blue Assay and Application to Fluvial Monitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9989-9995. [PMID: 28771345 DOI: 10.1021/acs.est.7b01581] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Here, we present a new in situ microfluidic phosphate sensor that features an improved "phosphate blue" assay which includes polyvinylpyrrolidone in place of traditional surfactants-improving sensitivity and reducing temperature effects. The sensor features greater power economy and analytical performance relative to commercially available alternatives, with a mean power consumption of 1.8 W, a detection limit of 40 nM, a dynamic range of 0.14-10 μM, and an infield accuracy of 4 ± 4.5%. During field testing, the sensor was continuously deployed for 9 weeks in a chalk stream, revealing complex relations between flow rates and phosphate concentration that suggest changing dominance in phosphate sources. A distinct diel phosphorus signal was observed under low flow conditions, highlighting the ability of the sensor to decouple geochemical and biotic effects on phosphate dynamics in fluvial environments. This paper highlights the importance of high resolution in situ sensors in addressing the current gross under-sampling of aquatic environments.
Collapse
Affiliation(s)
| | - Maxime M Grand
- Ocean and Earth Science, University of Southampton , Southampton SO14 3ZH, United Kingdom
| | | | - Adrian M Nightingale
- Engineering and the Environment, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - David R Owsianka
- National Oceanography Centre , Southampton SO14 3ZH, United Kingdom
| | - Gregory J Slavik
- National Oceanography Centre , Southampton SO14 3ZH, United Kingdom
| | - Douglas P Connelly
- Ocean and Earth Science, University of Southampton , Southampton SO14 3ZH, United Kingdom
| | | | - Matthew C Mowlem
- National Oceanography Centre , Southampton SO14 3ZH, United Kingdom
| |
Collapse
|
11
|
Crockford L, O'Riordain S, Taylor D, Melland AR, Shortle G, Jordan P. The application of high temporal resolution data in river catchment modelling and management strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:461. [PMID: 28828562 DOI: 10.1007/s10661-017-6174-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Modelling changes in river water quality, and by extension developing river management strategies, has historically been reliant on empirical data collected at relatively low temporal resolutions. With access to data collected at higher temporal resolutions, this study investigated how these new dataset types could be employed to assess the precision and accuracy of two phosphorus (P) load apportionment models (LAMs) developed on lower resolution empirical data. Predictions were made of point and diffuse sources of P across ten different sampling scenarios. Sampling resolution ranged from hourly to monthly through the use of 2000 newly created datasets from high frequency P and discharge data collected from a eutrophic river draining a 9.48 km2 catchment. Outputs from the two LAMs were found to differ significantly in the P load apportionment (51.4% versus 4.6% from point sources) with reducing precision and increasing bias as sampling frequency decreased. Residual analysis identified a large deviation from observed data at high flows. This deviation affected the apportionment of P from diffuse sources in particular. The study demonstrated the potential problems in developing empirical models such as LAMs based on temporally relatively poorly-resolved data (the level of resolution that is available for the majority of catchments). When these models are applied ad hoc and outside an expert modelling framework using extant datasets of lower resolution, interpretations of their outputs could potentially reduce the effectiveness of management decisions aimed at improving water quality.
Collapse
Affiliation(s)
- L Crockford
- The Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland.
- Geography, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
- Crop and Environment Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK.
| | - S O'Riordain
- Statistics, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
| | - D Taylor
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - A R Melland
- National Centre for Engineering in Agriculture, University of Southern Queensland, Queensland, Australia
| | - G Shortle
- The Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland
| | - P Jordan
- The Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland
- School of Environmental Sciences, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
12
|
Bieroza MZ, Heathwaite AL. Unravelling organic matter and nutrient biogeochemistry in groundwater-fed rivers under baseflow conditions: Uncertainty in in situ high-frequency analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:1520-1533. [PMID: 26897611 DOI: 10.1016/j.scitotenv.2016.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/06/2016] [Accepted: 02/07/2016] [Indexed: 06/05/2023]
Abstract
In agricultural catchments, diffuse nutrient fluxes (mainly nitrogen N and phosphorus P), are observed to pollute receiving waters and cause eutrophication. Organic matter (OM) is important in mediating biogeochemical processes in freshwaters. Time series of the variation in nutrient and OM loads give insights into flux processes and their impact on biogeochemistry but are costly to maintain and challenging to analyse for elements that are highly reactive in the environment. We evaluated the capacity of the automated monitoring to capture typically low baseflow concentrations of the reactive forms of nutrients and OM: total reactive phosphorus (TRP), nitrate nitrogen (NO3-N) and tryptophan-like fluorescence (TLF). We compared the performance of in situ monitoring (wet chemistry analyser, UV-vis and fluorescence sensors) and automated grab sampling without instantaneous analysis using autosamplers. We found that automatic grab sampling shows storage transformations for TRP and TLF and do not reproduce the diurnal concentration pattern captured by the in situ analysers. The in situ TRP and fluorescence analysers respond to temperature variation and the relationship is concentration-dependent. Accurate detection of low P concentrations is particularly challenging due to large errors associated with both the in situ and autosampler measurements. Aquatic systems can be very sensitive to even low concentrations of P typical of baseflow conditions. Understanding transformations and measurement variability in reactive forms of nutrients and OM associated with in situ analysis is of great importance for understanding in-stream biogeochemical functioning and establishing robust monitoring protocols.
Collapse
Affiliation(s)
- M Z Bieroza
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom; Department of Soil and Environment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
| | - A L Heathwaite
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom
| |
Collapse
|
13
|
Aubert AH, Thrun MC, Breuer L, Ultsch A. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions. Sci Rep 2016; 6:31536. [PMID: 27572284 PMCID: PMC5004126 DOI: 10.1038/srep31536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022] Open
Abstract
High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.
Collapse
Affiliation(s)
- Alice H Aubert
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Michael C Thrun
- Databionics, Mathematics and Computer Science, Philipps University Marburg, Hans-Meerwein-Strasse 6, D-35032 Marburg, Germany
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany.,Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen Goethestrasse 58, D-35390 Giessen, Germany
| | - Alfred Ultsch
- Databionics, Mathematics and Computer Science, Philipps University Marburg, Hans-Meerwein-Strasse 6, D-35032 Marburg, Germany
| |
Collapse
|
14
|
Taffarello D, Guimarães J, de Sousa Lombardi RK, do Carmo Calijuri M, Mendiondo EM. Hydrologic Monitoring Plan of the Brazilian Water Producer/PCJ Project. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jep.2016.712152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bowes MJ, Jarvie HP, Halliday SJ, Skeffington RA, Wade AJ, Loewenthal M, Gozzard E, Newman JR, Palmer-Felgate EJ. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:608-20. [PMID: 25596349 DOI: 10.1016/j.scitotenv.2014.12.086] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/25/2014] [Accepted: 12/25/2014] [Indexed: 05/28/2023]
Abstract
The total reactive phosphorus (TRP) and nitrate concentrations of the River Enborne, southern England, were monitored at hourly interval between January 2010 and December 2011. The relationships between these high-frequency nutrient concentration signals and flow were used to infer changes in nutrient source and dynamics through the annual cycle and each individual storm event, by studying hysteresis patterns. TRP concentrations exhibited strong dilution patterns with increasing flow, and predominantly clockwise hysteresis through storm events. Despite the Enborne catchment being relatively rural for southern England, TRP inputs were dominated by constant, non-rain-related inputs from sewage treatment works (STW) for the majority of the year, producing the highest phosphorus concentrations through the spring-summer growing season. At higher river flows, the majority of the TRP load was derived from within-channel remobilisation of phosphorus from the bed sediment, much of which was also derived from STW inputs. Therefore, future phosphorus mitigation measures should focus on STW improvements. Agricultural diffuse TRP inputs were only evident during storms in the May of each year, probably relating to manure application to land. The nitrate concentration-flow relationship produced a series of dilution curves, indicating major inputs from groundwater and to a lesser extent STW. Significant diffuse agricultural inputs with anticlockwise hysteresis trajectories were observed during the first major storms of the winter period. The simultaneous investigation of high-frequency time series data, concentration-flow relationships and hysteresis behaviour through multiple storms for both phosphorus and nitrate offers a simple and innovative approach for providing new insights into nutrient sources and dynamics.
Collapse
Affiliation(s)
- M J Bowes
- Centre for Ecology and Hydrology, Wallingford, Oxon. OX10 8BB, UK.
| | - H P Jarvie
- Centre for Ecology and Hydrology, Wallingford, Oxon. OX10 8BB, UK
| | - S J Halliday
- School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6AB, UK
| | - R A Skeffington
- School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6AB, UK
| | - A J Wade
- School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6AB, UK
| | - M Loewenthal
- Environment Agency, Fobney Mead, Reading RG2 0SF, UK
| | - E Gozzard
- Centre for Ecology and Hydrology, Wallingford, Oxon. OX10 8BB, UK
| | - J R Newman
- Centre for Ecology and Hydrology, Wallingford, Oxon. OX10 8BB, UK
| | | |
Collapse
|