1
|
Wang Y, Sun Z, Qiang Z. Start-up of solid-phase denitrification process for treatment of nitrate-rich water in recirculating mariculture system: Carbon source selection and nitrate removal mechanism. CHEMOSPHERE 2023; 338:139568. [PMID: 37479001 DOI: 10.1016/j.chemosphere.2023.139568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Efficient nitrate removal from recirculating mariculture system (RMS) water is of significance since high concentration of nitrate would cause chronic health effects on aquatic organisms and eutrophication. Solid-phase denitrification (SPD) is a safer and more sustainable approach than conventional heterotrophic denitrification by dosing liquid carbon sources. Thus, its application for treating nitrate-rich RMS water was investigated in this study. Poly 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) was identified with the best nitrate removal among four kinds of carbon sources. PHBV-filled reactors started with mariculture, municipal and mixing sludges (at the ratio of 1:1) and fed with 200 mg L-1 nitrate-rich RMS water all achieved over 81% nitrate removals with a HRT of 4 days. The dissolved organic carbon concentrations of the reactors were in the range of 3-9 mg L-1. Arcobacter, Halomonas, and Psedomonas were dominant genera responsible for nitrate removal in different reactors. Metagenomic analyses indicate that both denitrification and assimilatory nitrate reduction (ANR) are the main contributors to nitrate removals. Metagenomic results illustrated nirB/D cooperated with nasA may perform ANR pathway, which transformed nitrate to ammonia for biosynthesis. These results indicate that SPD could be a safer alternative for treating nitrate-rich RMS water, and provide new insights into nitrogen metabolism pathways in SPD process.
Collapse
Affiliation(s)
- Yinghan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhimin Qiang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhang M, Lin K. Insight into the formation of polyhalogenated carbazoles during seawater chlorination. WATER RESEARCH 2023; 238:120009. [PMID: 37146400 DOI: 10.1016/j.watres.2023.120009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Although polyhalogenated carbazoles (PHCZs) have been widely detected in the marine environment, their origin is far from clear. In this study, the formation of PHCZs in the chlorination of seawater containing carbazole and its derivatives was investigated. A total of 14 PHCZs including six commonly found and eight unknown congeners were identified in the chlorination of seawater with carbazole. In addition, this study for the first time demonstrated the production of common PHCZs from the chlorination of seawater with 3-methyl carbazole and 3-formyl carbazole, especially 1,8-dibromo-3,6-dichlorocarbazole from 3-methyl carbazole. The formation of PHCZs in the reaction resulted from the halogenation of carbazole by reactive chlorine species (RCS) and mainly reactive bromine species (RBS), forming from the oxidation of bromide by RCS. Results also indicated that the reaction followed a successive halogenation pattern. A higher content of free chlorine and bromide facilitated the generation of RBS, while a higher concentration of DOC exhibited an inhibitory effect. The effects of free chlorine, bromide, DOC, and temperature on the formation of PHCZs were congener-specific. Given the widespread use of chlorination in seawater disinfection, seawater chlorination might be a potential source of PHCZs in the marine environment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Grote M, Boudenne JL, Croué JP, Escher BI, von Gunten U, Hahn J, Höfer T, Jenner H, Jiang J, Karanfil T, Khalanski M, Kim D, Linders J, Manasfi T, Polman H, Quack B, Tegtmeier S, Werschkun B, Zhang X, Ziegler G. Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. WATER RESEARCH 2022; 217:118383. [PMID: 35460978 DOI: 10.1016/j.watres.2022.118383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470-800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5-21.8 × 106 kg/a (kg per year) with contributions of 11.8-20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2-6% of the natural bromoform emissions from marine water, which is estimated to be 385-870 × 106 kg/a.
Collapse
Affiliation(s)
- Matthias Grote
- German Federal Institute for Risk Assessment, Unit Transport of Dangerous Goods and Chemical Exposure, Berlin, Germany.
| | | | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, Poitiers 86000, France
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Josefine Hahn
- Helmholtz-Zentrum Hereon, Institute for Coastal Environmental Chemistry, Geesthacht, Germany
| | | | | | - Jingyi Jiang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | | | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Jan Linders
- Member of GESAMP, GESAMP-BWWG, Retired, Formerly RIVM, De Waag 24, Amersfoort 3823 GE, the Netherland
| | - Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Harry Polman
- H20 Biofouling Solutions, Bemmel, the Netherland
| | - Birgit Quack
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Susann Tegtmeier
- Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
| | - Barbara Werschkun
- Wissenschaftsbüro Dr. Barbara Werschkun, Monumentenstraße31a, Berlin D-10829, Germany
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | |
Collapse
|
4
|
Pan Z, Zhu Y, Li L, Shao Y, Wang Y, Yu K, Zhu H, Zhang Y. Transformation of norfloxacin during the chlorination of marine culture water in the presence of iodide ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:717-727. [PMID: 30616062 DOI: 10.1016/j.envpol.2018.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The antibacterial agent norfloxacin (NOR) and sodium hypochlorite (NaClO), which are both widely used in marine culture, react with each other to form the halogenated disinfection byproducts (X-DBPs). The effects of the water characteristics and iodide concentration on the reaction kinetics were investigated. The results showed that the reaction rate of NOR with NaClO increases from 0.0586 min-1 to 0.1075 min-1 when the iodide concentration was changed from 0 μg-1 to 50 μg-1. This demonstrated the enhancement of NOR oxidation in the presence of iodide ions. Four novel iodinated DBPs (I-DBPs) were identified in the marine culture water. Iodine substitutions occurred at the C3 and C8 positions of NOR. The formation mechanisms of X-DBPs in the marine culture water were proposed based on the intermediate and final products. NOR may undergo a ring-opening reaction, a de-carbonyl reaction and substitution to form intermediates and finally generate the X-DBPs. Furthermore, the predicted logKOW and logBCF values of the I-DBPs were higher than that of the Br-DBPs and Cl-DBPs. The AOX concentration in the synthetic water samples decreased in the following order: seawater (8.49 mg L-1) > marine culture water (4.05 mg L-1) > fresh water (1.89 mg L-1). The amount of AOX also increased with the increase in iodide concentration. These results indicated that the I-DBPs were more toxic than their brominated and chlorinated analogues.
Collapse
Affiliation(s)
- Zihan Pan
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yunjie Zhu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Leiyun Li
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yanan Shao
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Shao Y, Pan Z, Rong C, Wang Y, Zhu H, Zhang Y, Yu K. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:9-18. [PMID: 29793109 DOI: 10.1016/j.envpol.2018.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
During chlorine disinfection process, reactions between the disinfectant and 17β-estradiol (E2) lead to the formation of halogenated disinfection byproducts (DBPs) which can be a risk to both ecosystem and human health. The degradation and transformation products of E2 in sodium hypochlorite (NaClO) disinfection processes of different water samples were investigated. The reaction kinetics research showed that the degradation rates of E2 were considerably dependent on the initial pH value and the types of water samples. In fresh water, synthetic marine aquaculture water and seawater, the reaction rate constant was 0.133 min-1, 2.067 min-1 and 2.592 min-1, respectively. The reasons for the above phenomena may be due to the different concentrations of bromide ions (Br-) in these three water samples which could promote the reaction between NaClO and E2. Furthermore, Br- could also cause the formation of brominated DBPs (Br-DBPs). The main DBPs, reaction centers and conceivable reaction pathways were explored. Seven halogenated DBPs have been observed including three chlorinated DBPs (Cl-DBPs) and four Br-DBPs. The active sites of E2 were found to be the pentabasic cyclic ring and the ortho position of the phenol moiety as well as C9-C10 position. The identified Cl/Br-DBPs were also confirmed in actual marine aquaculture water from a shrimp pond. The comparison of bio-concentration factors (BCF) values based on calculation of EPI-suite showed that the toxicities of the Br-DBPs were stronger than that of their chloride analogues. The absorbable organic halogens (AOX) analysis also suggested that the DBPs produced in the marine aquaculture water were more toxic than that in the fresh water system.
Collapse
Affiliation(s)
- Yanan Shao
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zihan Pan
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Chuan Rong
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Plup & Papermaking and Pollution Control, Nanning 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Wang J, Hao Z, Shi F, Yin Y, Cao D, Yao Z, Liu J. Characterization of Brominated Disinfection Byproducts Formed During the Chlorination of Aquaculture Seawater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5662-5670. [PMID: 29701972 DOI: 10.1021/acs.est.7b05331] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although brominated disinfection byproducts (Br-DBPs) have been reported to form from reactions between bromide, dissolved organic matter (DOM), and disinfectants, their formation during the disinfection of aquaculture seawater via chlorination has been rarely studied. Herein, after 5 days of disinfection of raw aquaculture seawater samples with sodium dichloroisocyanurate (NaDDC), trichloroisocyanuric acid (TCCA) and chlorine dioxide (ClO2), 181, 179, and 37 Br-DBPs were characterized by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Sunlight irradiation of the chlorinated aquaculture seawater with TCCA and NaDDC was found to reduce the formation of Br-DBPs, possibly due to the photodegradation of the important HBrO/HClO intermediate and the degradation of formed Br-DBPs. The formation of Br-DBPs chlorinated by ClO2 increased under sunlight irradiation. The number of Br-DBPs formed during chlorination processes agreed well with the total organic bromine (TOBr) content measured by inductively coupled plasma mass spectrometry (ICP-MS). Most of the Br-DBPs were highly unsaturated and phenolic compounds, which were primarily generated through electrophilic substitution by bromine coupled with other reactions. In addition, some emerging aromatic Br-DBPs with high relative intensities were also assigned, and these compounds might be highly lipophilic and could potentially accumulate in marine organisms. Our findings call for further focus on and investigation of the Br-DBPs produced in chlorinated aquaculture seawater.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
- Institute of Environment and Health, Jianghan University , Wuhan 430056 , China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Fengqiong Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Ziwei Yao
- National Marine Environmental Monitoring Center, 42 Linghe Street, Shahekou District , Dalian 116023 , China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
7
|
Leal JF, Henriques IS, Correia A, Santos EBH, Esteves VI. Antibacterial activity of oxytetracycline photoproducts in marine aquaculture's water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:644-649. [PMID: 27769773 DOI: 10.1016/j.envpol.2016.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Oxytetracycline (OTC) is one of the most used antibiotics in aquaculture. The main concern related to its use is the bacterial resistance, when ineffective treatments are applied for its removal or inactivation. OTC photo-degradation has been suggested as an efficient complementary process to conventional methods used in intensive fish production (e.g.: ozonation). Despite this, and knowing that the complete mineralization of OTC is difficult, few studies have examined the antibacterial activity of OTC photoproducts. Thus, the main aim of this work is to assess whether the OTC photoproducts retain the antibacterial activity of its parent compound (OTC) after its irradiation, using simulated sunlight. For that, three Gram-negative bacteria (Escherichia coli, Vibrio sp. and Aeromonas sp.) and different synthetic and natural aqueous matrices (phosphate buffered solutions at different salinities, 0 and 21‰, and three different samples from marine aquaculture industries) were tested. The microbiological assays were made using the well-diffusion method before and after OTC has been exposed to sunlight. The results revealed a clear effect of simulated sunlight, resulting on the decrease or elimination of the antibacterial activity for all strains and in all aqueous matrices due to OTC photo-degradation. For E. coli, it was also observed that the antibacterial activity of OTC is lower in the presence of sea-salts, as demonstrated by comparison of halos in aqueous matrices containing or not sea-salts.
Collapse
Affiliation(s)
- J F Leal
- Department of Chemistry, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - I S Henriques
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; Institute for Research in Biomedicine-iBiMED, Health Sciences Program, University of Aveiro, Portugal.
| | - A Correia
- Department of Biology, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - E B H Santos
- Department of Chemistry, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - V I Esteves
- Department of Chemistry, University of Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| |
Collapse
|