1
|
Aghaei F, Wong A, Zargani M, Sarshin A, Feizolahi F, Derakhshan Z, Hashemi M, Arabzadeh E. Effects of swimming exercise combined with silymarin and vitamin C supplementation on hepatic inflammation, oxidative stress, and histopathology in elderly rats with high-fat diet-induced liver damage. Nutrition 2023; 115:112167. [PMID: 37611505 DOI: 10.1016/j.nut.2023.112167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES The aim of this study was to demonstrate that swimming exercise combined with silymarin and vitamin C supplementation improves hepatic inflammation, oxidative stress, and liver histopathology in elderly rats with high-fat diet-induced liver damage. METHODS Forty elderly male Wistar rats were randomly assigned to five groups (n = 8 in each): a normal diet (control), a high-fat diet (HFD), HFD + silymarin and vitamin C supplementation (HFD+Sup), HFD + swimming exercise (HFD+Exe), and HFD+Sup+Exe group (HFD+Sup+Exe). The non-alcoholic fatty liver model was induced for 6 wk in the HFD groups. After 6 wk of consuming an HFD, a daily supplemental gavage was administered to rats as an intervention along with HFD in the supplement groups for 8 wk. Moreover, rats in the exercise groups were subjected to swimming exercise training 5 d/wk for the same period. RESULTS The combination of swimming training and supplementation caused significant decreases in liver inflammatory biomarkers tumor necrosis factor-α and interleukin-1β while increasing total antioxidant capacity and peroxisome proliferator-activated receptor α (P < 0.05). CONCLUSION In elderly rats with liver injury caused by an HFD, the combination of exercise and silymarin with vitamin C supplementation effectively reduced oxidative stress, liver inflammation, fat accumulation, and regulated liver enzymes.
Collapse
Affiliation(s)
- Fariba Aghaei
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, Virginia, USA
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Zhila Derakhshan
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammadreza Hashemi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Wang D, Yin Z, Han L, Zhang M, Li H, Yang X, Chen Y, Zhang S, Han J, Duan Y. Ascorbic acid inhibits transcriptional activities of LXRα to ameliorate lipid metabolism disorder. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
3
|
Luo K, Li X, Wang L, Rao W, Wu Y, Liu Y, Pan M, Huang D, Zhang W, Mai K. Ascorbic Acid Regulates the Immunity, Anti-Oxidation and Apoptosis in Abalone Haliotis discus hannai Ino. Antioxidants (Basel) 2021; 10:1449. [PMID: 34573080 PMCID: PMC8465606 DOI: 10.3390/antiox10091449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The present study was conducted to investigate the roles of ascorbic acid (AA) in immune response, anti-oxidation and apoptosis in abalone (Haliotis discus hannai Ino). Seven semi-purified diets with graded levels of AA (0, 50, 100, 200, 500, 1000 and 5000 mg/kg) were fed to abalone (initial weight: 12.01 ± 0.001 g, initial shell length: 48.44 ± 0.069 mm) for 100 days. The survival, weight gain rate and daily increment in shell length were not affected by dietary AA. The AA content in the gill, muscle and digestive glands of abalone was significantly increased by dietary AA. In terms of immunity, dietary AA significantly improved the total hemocyte count, respiratory burst and phagocytic activity in hemolymph, and lysozyme activity in cell-free hemolymph (CFH). In the digestive gland, the TLR-MyD88-dependent and TLR-MyD88-independent signaling pathways were suppressed by dietary AA supplementation. The mRNA levels of β-defensin and arginase-I in the digestive gland were significantly increased by dietary AA. In the gill, only the TLR-MyD88-dependent signaling pathway was depressed by dietary AA to reduce inflammation in abalone. The level of mytimacin 6 in the gill was significantly upregulated by dietary AA. After Vibrio parahaemolyticus infection, the TLR signaling pathway in the digestive gland was suppressed by dietary AA, which reduced inflammation in the abalone. In terms of anti-oxidation, superoxide dismutase, glutathione peroxidase and catalase activities, as well as total anti-oxidative capacity and reduced glutathione content in CFH, were all significantly upregulated. The malondialdehyde content was significantly downregulated by dietary AA. The anti-oxidative capacity was improved by triggering the Keap1-Nrf2 pathway in abalone. In terms of apoptosis, dietary AA could enhance the anti-apoptosis ability via the JNK-Bcl-2/Bax signaling cascade in abalone. To conclude, dietary AA was involved in regulating immunity, anti-oxidation and apoptosis in abalone.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (K.L.); (X.L.); (L.W.); (W.R.); (Y.W.); (Y.L.); (M.P.); (D.H.); (K.M.)
| | | |
Collapse
|
4
|
Wang D, Yang X, Chen Y, Gong K, Yu M, Gao Y, Wu X, Hu H, Liao C, Han J, Duan Y. Ascorbic acid enhances low-density lipoprotein receptor expression by suppressing proprotein convertase subtilisin/kexin 9 expression. J Biol Chem 2020; 295:15870-15882. [PMID: 32913121 DOI: 10.1074/jbc.ra120.015623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/04/2020] [Indexed: 01/30/2023] Open
Abstract
Ascorbic acid, a water-soluble antioxidant, regulates various biological processes and is thought to influence cholesterol. However, little is known about the mechanisms underpinning ascorbic acid-mediated cholesterol metabolism. Here, we determined if ascorbic acid can regulate expression of proprotein convertase subtilisin/kexin 9 (PCSK9), which binds low-density lipoprotein receptor (LDLR) leading to its intracellular degradation, to influence low-density lipoprotein (LDL) metabolism. At cellular levels, ascorbic acid inhibited PCSK9 expression in HepG2 and Huh7 cell lines. Consequently, LDLR expression and cellular LDL uptake were enhanced. Similar effects of ascorbic acid on PCSK9 and LDLR expression were observed in mouse primary hepatocytes. Mechanistically, ascorbic acid suppressed PCSK9 expression in a forkhead box O3-dependent manner. In addition, ascorbic acid increased LDLR transcription by regulating sterol regulatory element-binding protein 2. In vivo, administration of ascorbic acid reduced serum PCSK9 levels and enhanced liver LDLR expression in C57BL/6J mice. Reciprocally, lack of ascorbic acid supplementation in L-gulono-γ-lactone oxidase deficient (Gulo -/-) mice increased circulating PCSK9 and LDL levels, and decreased liver LDLR expression, whereas ascorbic acid supplementation decreased PCSK9 and increased LDLR expression, ameliorating LDL levels in Gulo -/- mice fed a high fat diet. Moreover, ascorbic acid levels were negatively correlated to PCSK9, total and LDL levels in human serum samples. Taken together, these findings suggest that ascorbic acid reduces PCSK9 expression, leading to increased LDLR expression and cellular LDL uptake. Thus, supplementation of ascorbic acid may ameliorate lipid profiles in ascorbic acid-deficient species.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'An, China
| | - Yongyao Gao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ximei Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Huaqing Hu
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
5
|
Ge W, Gao Y, Zhao Y, Yang Y, Sun Q, Yang X, Xu X, Zhang J. Decreased T-cell mediated hepatic injury in concanavalin A-treated PLRP2-deficient mice. Int Immunopharmacol 2020; 85:106604. [PMID: 32428799 DOI: 10.1016/j.intimp.2020.106604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Concanavalin A (Con A) activates innate immunity and causes liver damage mediated by cytotoxic T lymphocytes (CTL) in mice. The Pancreatic lipase-related protein 2 (PLRP2) is induced by interleukin (IL)-4 in vitro in CTLs and associated with CTL functions. We examined the role of PLRP2 in a mouse model of Con A-induced T cell-mediated hepatitis. PLRP2-knockout and wild-type (WT) mice were inoculated with 20 mg/kg Con A. Mice lacking PLRP2 reduced Con A-induced hepatitis, which was manifested by a decrease in serum aminotransferase and histopathological assessment. The expression and secretion of cytokines including tumor necrosis factor-alpha (TNF-α), interferon (IFN)-γ, IL-6, and IL-1β were suppressed in Con A-treated PLRP2-knockout mice. In PLRP2 knockout mice, Con A-induced liver chemokines and adhesion molecules (such as MIP-1α, MIP-1β, ICAM-1 and MCP-1) were also down regulated. In the WT liver treated with Con A, the number of T cells (CD4+ and CD8+) and macrophages (CD11b+ F4/80+) increased significantly, while the lack of PLRP2 reduced the number of T cells in the liver, but had no effect on macrophages. The shift of the metabolic profiles was impaired in Con A-treated PLRP2-knockout mice compared to WT mice. In conclusion, these results indicate that PLRP2 deficiency reduces T-cell mediated Con A-induced hepatitis, and suggest PLRP2 is a potential target of anti-inflammatory and immunomodulatory drugs to treat immune-mediated hepatitis.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
6
|
Chen L, Hu C, Hood M, Zhang X, Zhang L, Kan J, Du J. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis. Nutrients 2020; 12:E1193. [PMID: 32344708 PMCID: PMC7230237 DOI: 10.3390/nu12041193] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Novel coronaviruses (CoV) have emerged periodically around the world in recent years. The recurrent spreading of CoVs imposes an ongoing threat to global health and the economy. Since no specific therapy for these CoVs is available, any beneficial approach (including nutritional and dietary approach) is worth investigation. Based on recent advances in nutrients and phytonutrients research, a novel combination of vitamin C, curcumin and glycyrrhizic acid (VCG Plus) was developed that has potential against CoV infection. System biology tools were applied to explore the potential of VCG Plus in modulating targets and pathways relevant to immune and inflammation responses. Gene target acquisition, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment were conducted consecutively along with network analysis. The results show that VCG Plus can act on 88 hub targets which are closely connected and associated with immune and inflammatory responses. Specifically, VCG Plus has the potential to regulate innate immune response by acting on NOD-like and Toll-like signaling pathways to promote interferons production, activate and balance T-cells, and regulate the inflammatory response by inhibiting PI3K/AKT, NF-κB and MAPK signaling pathways. All these biological processes and pathways have been well documented in CoV infections studies. Therefore, our findings suggest that VCG Plus may be helpful in regulating immune response to combat CoV infections and inhibit excessive inflammatory responses to prevent the onset of cytokine storm. However, further in vitro and in vivo experiments are warranted to validate the current findings with system biology tools. Our current approach provides a new strategy in predicting formulation rationale when developing new dietary supplements.
Collapse
Affiliation(s)
- Liang Chen
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Chun Hu
- Nutrilite Health Institute, 5600 Beach Boulevard, Buena Park, CA 90621, USA;
| | - Molly Hood
- Nutrilite Health Institute, 7575 East Fulton Avenue, Ada, MI 49355, USA;
| | - Xue Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Lu Zhang
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Juntao Kan
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| | - Jun Du
- Nutrilite Health Institute, 720 Cailun Road, Shanghai 201203, China; (L.C.); (X.Z.); (L.Z.); (J.K.)
| |
Collapse
|
7
|
Esmaeilizadeh M, Hosseini M, Beheshti F, Alikhani V, Keshavarzi Z, Shoja M, Mansoorian M, Sadeghnia HR. Vitamin C improves liver and renal functions in hypothyroid rats by reducing tissue oxidative injury. INT J VITAM NUTR RES 2020; 90:84-94. [PMID: 30789800 DOI: 10.1024/0300-9831/a000495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background: The effects of Vit C on liver and renal function and the tissues oxidative damage was investigated in hypothyroid rats. Materials and methods: The pregnant rats were divided into 5 groups (n=6): (1) Control; (2) Propylthiouracil (PTU; 0.005%), (3-5) PTU plus 10, 100 or 500 mg/kg b.w. Vit C. The drugs were added to the drinking water of the dams and their pups during lactation period and then continued for the offspring through the first 8 weeks of their life. Finally, 7 male offspring from each group were randomly selected. Results: Thyroxine, protein and albumin concentrations in the serum and thiol content and superoxide dismutase (SOD) and catalase (CAT) activities in renal and liver tissues of hypothyroid group was lower (all P<0.001) while, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALK-P), creatinine and blood urea nitrogen (BUN) concentrations in the serum and malondialdehyde (MDA) in the liver and renal tissues were higher than the control (all P<0.001). All doses of Vit C increased thyroxine, protein and albumin and thiol content in in renal and liver tissues while, decreased AST, ALT and ALK-P concentration and MDA in liver and renal tissues compared to PTU group (P<0.05-P<0.001). Creatinine, BUN and SOD and CAT were improved by both 100 and 500 mg/kg of Vit C in the renal (P<0.05-P<0.001) and by 100 mg/kg in the liver (P<0.05-P<0.001). Conclusion: Vit C improved liver and renal function of hypothyroid rats which might be due to its protective effects against tissues oxidative damage.
Collapse
Affiliation(s)
- Mahdi Esmaeilizadeh
- Student Research Committee, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Neurogenic Inflammation Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajihe Alikhani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohsen Shoja
- Student Research Committee, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran
| | - Mozhgan Mansoorian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Qing Z, Xiao-Hui W, Xi-Mei W, Chao-Chun Z. Vitamin C deficiency aggravates tumor necrosis factor α-induced insulin resistance. Eur J Pharmacol 2018; 829:1-11. [PMID: 29625084 DOI: 10.1016/j.ejphar.2018.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Chronic low-grade inflammation plays a major role in the development of insulin resistance. The potential role and underlying mechanism of vitamin C, an antioxidant and anti-inflammatory agent, was investigated in tumor necrosis factor-α (TNF-α)-induced insulin resistance. Gulonolactone oxidase knockout (Gulo-/-) mice genetically unable to synthesize vitamin C were used to induce insulin resistance by continuously pumping small doses of TNF-α for seven days, and human liver hepatocellular carcinoma cells (HepG2 cells) were used to induce insulin resistance by treatment with TNF-α. Vitamin C deficiency aggravated TNF-α-induced insulin resistance in Gulo-/- mice, resulting in worse glucose tolerance test (GTT) results, higher fasting plasma insulin level, and the inactivation of the protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) pathway in the liver. Vitamin C deficiency also worsened liver lipid accumulation and inflammation in TNF-α-treated Gulo-/- mice. In HepG2 cells, vitamin C reversed the TNF-α-induced reduction of glucose uptake and glycogen synthesis, which were mediated by increasing GLUT2 levels and the activation of the insulin receptor substrate (IRS-1)/AKT/GSK3β pathway. Furthermore, vitamin C inhibited the TNF-α-induced activation of not only the mitogen-activated protein kinase (MAPKs), but also nuclear factor-kappa B (NF-κB) signaling. Taken together, vitamin C is essential for preventing and improving insulin resistance, and the supplementing with vitamin C may be an effective therapeutic intervention for metabolic disorders.
Collapse
Affiliation(s)
- Zhou Qing
- Department of Endocrinology of the affiliated Children's Hospital, Zhejiang University School of Medicine, China
| | - Wu Xiao-Hui
- Department of Endocrinology of the affiliated Children's Hospital, Zhejiang University School of Medicine, China
| | - Wu Xi-Mei
- Department of Pharmacology, Zhejiang University School of Medicine, China
| | - Zou Chao-Chun
- Department of Endocrinology of the affiliated Children's Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
9
|
Chen J, Sun X, Xia T, Mao Q, Zhong L. Pretreatment with dihydroquercetin, a dietary flavonoid, protected against concanavalin A-induced immunological hepatic injury in mice and TNF-α/ActD-induced apoptosis in HepG2 cells. Food Funct 2018; 9:2341-2352. [PMID: 29589006 DOI: 10.1039/c7fo01073g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have previously demonstrated the hepatoprotective effect of dihydroquercetin (DHQ) against concanavalin A (Con A)-induced immunological hepatic injury in mice.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Gastroenterology
- Huashan Hospital North
- Fudan University
- Shanghai
- China
| | - Xu Sun
- Department of Gastroenterology
- Huashan Hospital North
- Fudan University
- Shanghai
- China
| | - Tingting Xia
- Department of Gastroenterology
- Huashan Hospital North
- Fudan University
- Shanghai
- China
| | - Qiqi Mao
- Department of Gastroenterology
- Huashan Hospital North
- Fudan University
- Shanghai
- China
| | - Liang Zhong
- Department of Gastroenterology
- Huashan Hospital North
- Fudan University
- Shanghai
- China
| |
Collapse
|
10
|
Wu T, Zhang Q, Song H. Swertiamarin attenuates carbon tetrachloride (CCl4)-induced liver injury and inflammation in rats by regulating the TLR4 signaling pathway. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Tao Wu
- Huazhong University of Science and Technology, China
| | - Qianrui Zhang
- General Hospital of the Yangtze River Shipping, China
| | - Hongping Song
- Huazhong University of Science and Technology, China
| |
Collapse
|
11
|
Zhang H, Wu MY, Guo DJ, Wan CW, Chan SW. Gui-ling-gao inhibits Concanavalin A-induced inflammation by suppressing the expressions of iNOS and proinflammatory cytokines in mice isolated splenocytes. J Food Biochem 2017. [DOI: 10.1111/jfbc.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huan Zhang
- Food Safety and Technology Research Centre; The Hong Kong Polytechnic University; Hong Kong China
| | - Min-Yi Wu
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation); Shenzhen China
| | - De-Jian Guo
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation); Shenzhen China
| | - Chun-Wai Wan
- Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
| | - Shun-Wan Chan
- Food Safety and Technology Research Centre; The Hong Kong Polytechnic University; Hong Kong China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation); Shenzhen China
- Department of Applied Biology and Chemical Technology; The Hong Kong Polytechnic University; Hong Kong China
- Department of Food and Health Sciences, Faculty of Science and Technology; Technological and Higher Education Institute of Hong Kong; Hong Kong China
| |
Collapse
|
12
|
Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol 2016; 35:1203-1213. [PMID: 26921358 DOI: 10.1177/0960327115626583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adverse complications associated with antineoplastic drug-based cancer therapy are the major clinical drawbacks. Oxidative stress and inflammation play a major role in the damage due to cancer therapy. In the current study, we investigated the modulatory effect of vitamin C (Vit. C) on liver toxicity induced by 5-fluorouracil (5-FU) in rats. Animals were divided into four groups. Animals in group I received vehicle. Oral gavage of Vit. C (500 mg kg-1 body weight (b.wt.)) was given to the animals in group III and group IV. 5-FU (150 mg kg-1 b.wt.) was injected intraperitoneally to the animals in group II and group III. Findings of the present study revealed that oral administration of Vit. C significantly ameliorated the level of lipid peroxidation and the activity of myeloperoxidase. Vit. C administration markedly reduced the activation of nuclear factor κB and expression of cyclooxygenase 2, whereas nuclear translocation of nuclear factor erythroid 2-related factor 2 was increased. Hepatic histopathological analyses further supported the protective effect of Vit. C. Findings of the current study demonstrate that the toxic free radicals and inflammatory mediators generated due to chemotherapy play a critical role in 5-FU-induced hepatic damage. Attenuating action of Vit. C may be due to the modulation of redox-sensitive transcription factors and associated target molecules.
Collapse
Affiliation(s)
- A K Al-Asmari
- 1 Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - A Q Khan
- 1 Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - N Al-Masri
- 2 Department of Hepatology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Wu W, Su M, Li T, Wu K, Wu X, Tang Z. Cantharidin-induced liver injuries in mice and the protective effect of vitamin C supplementation. Int Immunopharmacol 2015; 28:182-7. [DOI: 10.1016/j.intimp.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
|