1
|
Issahaku AR, Wilhelm A, Schutte-Smith M, Erasmus E, Visser H. Elucidating the binding mechanisms of GABA and Muscimol as an avenue to discover novel GABA-mimetic small molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38520326 DOI: 10.1080/07391102.2024.2331088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Gamma-aminobutyric acid (GABA) signaling is the principal inhibitory pathway in the central nervous system. It is critical in neuronal cell proliferation and fate determination. Any aberration in GABA inhibition results in psychiatric and neurological diseases. Thus, modulating GABAergic neurotransmission has become the basis of drug therapy for psychiatric and several neurological diseases. Though GABA and muscimol are classical inhibitors of GABA receptors, the search for novel inhibitors continues unabated. In this study, the binding mechanism of GABA and muscimol was elucidated and applied in the search for small molecule GABAergic inhibitors using comprehensive computational techniques. It was revealed that a high-affinity binding of GABA and muscimol was mediated by a water molecule involving α1Thr129 and then stabilized by strong interactions including salt bridges with β2Glu155 and α1Arg66 amidst hydrogen bonds, π-π stacking, and π -cation interactions with other residues. The binding of GABA and muscimol was also characterized by stability and deeper penetration into the hydrophobic core of the protein which resulted in conformational changes of the binding pocket and domain, by inducing correlated motions of the residues. Thermodynamics analysis showed GABA and muscimol exhibited total binding free energies of -19.85 ± 8.83 Kcal/mol and -26.55 ± 3.42 Kcal/mol, respectively. A pharmacophore model search, based on the energy contributions of implicating binding residues, resulted in the identification of ZINC68604167, ZINC19735138, ZINC04202466, ZINC00901626, and ZINC01532854 as potential GABA-mimetic compounds from metabolites and natural products libraries. This study has elucidated the binding mechanisms of GABA and muscimol and successfully applied in the identification of GABA-mimetic compounds.
Collapse
Affiliation(s)
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | | | - Elizabeth Erasmus
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Hendrik Visser
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
2
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
3
|
Issahaku AR, Mncube SM, Agoni C, Kwofie SK, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Mukelabai N, Soremekun O, Soliman MES. Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL3 in cancer treatment from natural compounds. J Mol Model 2023; 29:122. [PMID: 36995499 DOI: 10.1007/s00894-023-05516-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
CONTEXT [Formula: see text]-adenosine-methyltransferase (METTL3) is the catalytic domain of the 'writer' proteins which is involved in the post modifications of [Formula: see text]-methyladinosine ([Formula: see text]). Though its activities are essential in many biological processes, it has been implicated in several types of cancer. Thus, drug developers and researchers are relentlessly in search of small molecule inhibitors that can ameliorate the oncogenic activities of METTL3. Currently, STM2457 is a potent, highly selective inhibitor of METTL3 but is yet to be approved. METHODS In this study, we employed structure-based virtual screening through consensus docking by using AutoDock Vina in PyRx interface and Glide virtual screening workflow of Schrodinger Glide. Thermodynamics via MM-PBSA calculations was further used to rank the compounds based on their total free binding energies. All atom molecular dynamics simulations were performed using AMBER 18 package. FF14SB force fields and Antechamber were used to parameterize the protein and compounds respectively. Post analysis of generated trajectories was analyzed with CPPTRAJ and PTRAJ modules incorporated in the AMBER package while Discovery studio and UCSF Chimera were used for visualization, and origin data tool used to plot all graphs. RESULTS Three compounds with total free binding energies higher than STM2457 were selected for extended molecular dynamics simulations. The compounds, SANCDB0370, SANCDB0867, and SANCDB1033, exhibited stability and deeper penetration into the hydrophobic core of the protein. They engaged in relatively stronger intermolecular interactions involving hydrogen bonds with resultant increase in stability, reduced flexibility, and decrease in the surface area of the protein available for solvent interactions suggesting an induced folding of the catalytic domain. Furthermore, in silico pharmacokinetics and physicochemical analysis of the compounds revealed good properties suggesting these compounds could serve as promising MEETL3 entry inhibitors upon modifications and optimizations as presented by natural compounds. Further biochemical testing and experimentations would aid in the discovery of effective inhibitors against the berserk activities of METTL3.
Collapse
|
4
|
Shen C, Liu H, Wang X, Lei T, Wang E, Xu L, Yu H, Li D, Yao X. Importance of Incorporating Protein Flexibility in Molecule Modeling: A Theoretical Study on Type I 1/2 NIK Inhibitors. Front Pharmacol 2019; 10:345. [PMID: 31024312 PMCID: PMC6465739 DOI: 10.3389/fphar.2019.00345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
NF-κB inducing kinase (NIK), which is considered as the central component of the non-canonical NF-κB pathway, has been proved to be an important target for the regulation of the immune system. In the past few years, NIK inhibitors with various scaffolds have been successively reported, among which type I1/2 inhibitors that can not only bind in the ATP-binding pocket at the DFG-in state but also extend into an additional back pocket, make up the largest proportion of the NIK inhibitors, and are worthy of more attention. In this study, an integration protocol that combines molecule docking, MD simulations, ensemble docking, MM/GB(PB)SA binding free energy calculations, and decomposition was employed to understand the binding mechanism of 21 tricyclic type I1/2 NIK inhibitors. It is found that the docking accuracy is largely dependent on the selection of docking protocols as well as the crystal structures. The predictions given by the ensemble docking based on multiple receptor conformations (MRCs) and the MM/GB(PB)SA calculations based on MD simulations showed higher linear correlations with the experimental data than those given by conventional rigid receptor docking (RRD) methods (Glide, GOLD, and Autodock Vina), highlighting the importance of incorporating protein flexibility in predicting protein–ligand interactions. Further analysis based on MM/GBSA demonstrates that the hydrophobic interactions play the most essential role in the ligand binding to NIK, and the polar interactions also make an important contribution to the NIK-ligand recognition. A deeper comparison of several pairs of representative derivatives reveals that the hydrophobic interactions are vitally important in the structural optimization of analogs as well. Besides, the H-bond interactions with some key residues and the large desolvation effect in the back pocket devote to the affinity distinction. It is expected that our study could provide valuable insights into the design of novel and potent type I1/2 NIK inhibitors.
Collapse
Affiliation(s)
- Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tailong Lei
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lei Xu
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Huidong Yu
- Rongene Pharma Co., Ltd., Shenzhen, China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
6
|
Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation. Appl Biochem Biotechnol 2016; 181:192-218. [DOI: 10.1007/s12010-016-2207-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
7
|
Dong K, Wang X, Yang X, Zhu X. Binding mechanism of CDK5 with roscovitine derivatives based on molecular dynamics simulations and MM/PBSA methods. J Mol Graph Model 2016; 68:57-67. [PMID: 27371933 DOI: 10.1016/j.jmgm.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
Roscovitine derivatives are potent inhibitors of cyclin-dependent kinase 5 (CDK5), but they exhibit different activities, which has not been understood clearly up to now. On the other hand, the task of drug design is difficult because of the fuzzy binding mechanism. In this context, the methods of molecular docking, molecular dynamics (MD) simulation, and binding free energy analysis are applied to investigate and reveal the detailed binding mechanism of four roscovitine derivatives with CDK5. The electrostatic and van der Waals interactions of the four inhibitors with CDK5 are analyzed and discussed. The calculated binding free energies in terms of MM-PBSA method are consistent with experimental ranking of inhibitor effectiveness for the four inhibitors. The hydrogen bonds of the inhibitors with Cys83 and Lys33 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the pivotal contacts with Ile10 and Leu133 have larger contributions to the binding free energy and play critical roles in distinguishing the variant bioactivity of four inhibitors. In terms of binding mechanism of the four inhibitors with CDK5 and energy contribution of fragments of each inhibitor, two new CDK5 inhibitors are designed and have stronger inhibitory potency.
Collapse
Affiliation(s)
- Keke Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xueyu Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaolei Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
8
|
Posch C, Sanlorenzo M, Vujic I, Oses-Prieto JA, Cholewa BD, Kim ST, Ma J, Lai K, Zekhtser M, Esteve-Puig R, Green G, Chand S, Burlingame AL, Panzer-Grümayer R, Rappersberger K, Ortiz-Urda S. Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2α Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 2016; 136:2041-2048. [PMID: 27251789 DOI: 10.1016/j.jid.2016.05.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/20/2023]
Abstract
In melanoma, mutant and thereby constantly active neuroblastoma rat sarcoma (NRAS) affects 15-20% of tumors, contributing to tumor initiation, growth, invasion, and metastasis. Recent therapeutic approaches aim to mimic RAS extinction by interfering with critical signaling pathways downstream of the mutant protein. This study investigates the phosphoproteome of primary human melanocytes bearing mutations in the two hot spots of NRAS, NRAS(G12) and NRAS(Q61). Stable isotope labeling by amino acids in cell culture followed by mass spectrometry identified 14,155 spectra of 3,371 unique phosphopeptides mapping to 1,159 proteins (false discovery rate < 2%). Data revealed pronounced PI3K/AKT signaling in NRAS(G12V) mutant cells and pronounced mitogen-activated protein kinase (MAPK) signaling in NRAS(Q61L) variants. Computer-based prediction models for kinases involved, revealed that CK2α is significantly overrepresented in primary human melanocytes bearing NRAS(Q61L) mutations. Similar differences were found in human NRAS(Q61) mutant melanoma cell lines that were also more sensitive to pharmacologic CK2α inhibition compared with NRAS(G12) mutant cells. Furthermore, CK2α levels were pronounced in patient samples of NRAS(Q61) mutant melanoma at the mRNA and protein level. The preclinical findings of this study reveal that codon 12 and 61 mutant NRAS cells have distinct signaling characteristics that could allow for the development of more effective, mutation-specific treatment modalities.
Collapse
Affiliation(s)
- Christian Posch
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria; Leukemia Biology Group, Children's Cancer Research Institute, Vienna, Austria; School of Medicine, Sigmund Freud University, Vienna, Austria.
| | - Martina Sanlorenzo
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Igor Vujic
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA; Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria; School of Medicine, Sigmund Freud University, Vienna, Austria
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Brian D Cholewa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarasa T Kim
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Ma
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Kevin Lai
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Mitchell Zekhtser
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Rosaura Esteve-Puig
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Gary Green
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| | - Shreya Chand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California, USA
| | | | - Klemens Rappersberger
- Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria
| | - Susana Ortiz-Urda
- Department of Dermatology, Mt. Zion Cancer Research Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Silva JRA, Bishai WR, Govender T, Lamichhane G, Maguire GEM, Kruger HG, Lameira J, Alves CN. Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2. J Biomol Struct Dyn 2015; 34:304-17. [PMID: 25762064 DOI: 10.1080/07391102.2015.1029000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The single crystal X-ray structure of the extracellular portion of the L,D-transpeptidase (ex-LdtMt2 - residues 120-408) enzyme was recently reported. It was observed that imipenem and meropenem inhibit activity of this enzyme, responsible for generating L,D-transpeptide linkages in the peptidoglycan layer of Mycobacterium tuberculosis. Imipenem is more active and isothermal titration calorimetry experiments revealed that meropenem is subjected to an entropy penalty upon binding to the enzyme. Herein, we report a molecular modeling approach to obtain a molecular view of the inhibitor/enzyme interactions. The average binding free energies for nine commercially available inhibitors were calculated using MM/GBSA and Solvation Interaction Energy (SIE) approaches and the calculated energies corresponded well with the available experimentally observed results. The method reproduces the same order of binding energies as experimentally observed for imipenem and meropenem. We have also demonstrated that SIE is a reasonably accurate and cost-effective free energy method, which can be used to predict carbapenem affinities for this enzyme. A theoretical explanation was offered for the experimental entropy penalty observed for meropenem, creating optimism that this computational model can serve as a potential computational model for other researchers in the field.
Collapse
Affiliation(s)
- José Rogério A Silva
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| | - William R Bishai
- b Department of Medicine, Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Thavendran Govender
- c Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Gyanu Lamichhane
- c Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- d Taskforce to study Resistance Emergence & Antimicrobial Development Technology , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- d Taskforce to study Resistance Emergence & Antimicrobial Development Technology , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Jeronimo Lameira
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| | - Cláudio N Alves
- a Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais , Universidade Federal do Pará , CP 11101, Belém , PA 66075-110 , Brazil
| |
Collapse
|
10
|
Cui F, Yang K, Li Y. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation. PLoS One 2015; 10:e0125848. [PMID: 25938485 PMCID: PMC4418572 DOI: 10.1371/journal.pone.0125848] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/25/2015] [Indexed: 01/31/2023] Open
Abstract
To explore the inhibitory mechanism of catechins for digestive enzymes, we investigated the binding mode of catechins to a typical digestive enzyme-trypsin and analyzed the structure-activity relationship of catechins, using an integration of molecular docking, molecular dynamics simulation and binding free energy calculation. We found that catechins with different structures bound to a conservative pocket S1 of trypsin, which is comprised of residues 189–195, 214–220 and 225–228. In the trypsin-catechin complexes, Asp189 by forming strong hydrogen bonding, and Gln192, Trp215 and Gly216 through hydrophobic interactions, all significantly contribute to the binding of catechins. The number and the position of hydroxyl and aromatic groups, the structure of stereoisomers, and the orientation of catechins in the binding pocket S1 of trypsin all affect the binding affinity. The binding affinity is in the order of Epigallocatechin gallate (EGCG) > Epicatechin gallate (ECG) > Epicatechin (EC) > Epigallocatechin (EGC), and 2R-3R EGCG shows the strongest binding affinity out of other stereoisomers. Meanwhile, the synergic conformational changes of residues and catechins were also analyzed. These findings will be helpful in understanding the knowledge of interactions between catechins and trypsin and referable for the design of novel polyphenol based functional food and nutriceutical formulas.
Collapse
Affiliation(s)
- Fengchao Cui
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
| | - Kecheng Yang
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber & Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, P. R. China
- * E-mail:
| |
Collapse
|
11
|
Lv M, Ma S, Tian Y, Zhang X, Zhai H, Lv W. Structural insights into flavones as protein kinase CK2 inhibitors derived from a combined computational study. RSC Adv 2015. [DOI: 10.1039/c4ra10381e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Binding conformation of flavone inhibitors to protein kinase CK2.
Collapse
Affiliation(s)
- Min Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Shuying Ma
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Yueli Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Xiaoyun Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Wenjuan Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| |
Collapse
|
12
|
Wang Y, Zheng QC, Kong CP, Tian Y, Zhan J, Zhang JL, Zhang HX. Heparin makes differences: a molecular dynamics simulation study on the human βII-tryptase monomer. MOLECULAR BIOSYSTEMS 2014; 11:252-61. [PMID: 25366115 DOI: 10.1039/c4mb00381k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human β-tryptase, an enzyme with trypsin-like activity in mast cells, is an important target for the treatment of inflammatory and allergy related diseases. Heparin has been inferred to play a vital role in the stabilization of the tryptase structure and the maintenance of its active form. Up to now, the structure-function relationship between heparin and the βII-tryptase monomer has not been studied with atomic resolution due to the lack of a complex structure of tryptase and heparin. To this end, the exact effect of heparin bonding to the βII-tryptase monomer structure has been investigated using molecular docking and molecular dynamics (MD) simulation. The MD simulation results combined with MM-GB/SA calculations showed that heparin stabilized the β-tryptase structure mainly through salt bridge interaction. The averaged noncovalent interaction (aNCI) method was employed for the visualization of nonbonding interactions. A crucial loop, which is located in the core region of βII-tryptase monomer structure, has been found. Arg188 and Asp189 from this loop act as a salt bridge intermediary between 4-mer heparin and 0GX. The observation of a salt bridge between Asp189 and P1 groups of 0GX confirms the supposed interaction between these two groups. These two residues have been proved to be responsible for the direction of the P1 group of 0GX. Our study revealed that how heparin affected the activity of the human βII-tryptase monomer (hBTM) through salt bridge interactions. The knowledge of heparin binding characteristics and the key residue contributions in this study may enlighten further the inhibitor design of this enzyme and may also improve our understanding of inflammatory and allergy related diseases.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China.
| | | | | | | | | | | | | |
Collapse
|