1
|
Wang J, Zhou H, Wang Y, Xu M, Yu Y, Wang J, Liu Y. Prediction of submitochondrial proteins localization based on Gene Ontology. Comput Biol Med 2023; 167:107589. [PMID: 37883850 DOI: 10.1016/j.compbiomed.2023.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Mitochondria, which are double-membrane bound organelles commonly found in eukaryotic cells, play a fundamental role as sites for cellular energy production. Within the mitochondria, there exist substructures called submitochondria, and specific proteins associated with submitochondria have been implicated in various human diseases. Therefore, comprehending the precise localization of these submitochondrial proteins is of utmost importance. Such knowledge not only aids in unraveling their role in the pathogenesis of diseases but also facilitates the development of therapeutic drugs and diagnostic methods. In this study, we proposed a novel method based on Gene Ontology (GO) to predict the localization of the submitochondrial proteins, called GO-Submito. More specifically, the GO-Submito fine-tuned pre-training Bidirectional Encoder Representations from Transformers models to encode GO annotations into vectors. Subsequently, the Multi-head Attention Mechanism was employed to fuse these encoded vectors of GO annotations, enabling precise localization prediction. Through comprehensive evaluation, our results demonstrated that GO-Submito outperforms existing methods, offering a reliable and efficient tool for precisely localizing submitochondrial proteins.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Haihang Zhou
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Yuxiang Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Mengdie Xu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Yun Yu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China; Institute of Medical Informatics and Management, Nanjing Medical University, 101 Longmian Avenu, Nanjing, 210029, Jiangsu, China.
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China; Institute of Medical Informatics and Management, Nanjing Medical University, 101 Longmian Avenu, Nanjing, 210029, Jiangsu, China.
| | - Yun Liu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China; Department of Information, the First Affiliated Hospital, Nanjing Medical University, No. 300 Guang Zhou Road, Nanjing, 210029, Jiangsu, China; Institute of Medical Informatics and Management, Nanjing Medical University, 101 Longmian Avenu, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Sui J, Chen J, Chen Y, Iwamori N, Sun J. Identification of plant vacuole proteins by using graph neural network and contact maps. BMC Bioinformatics 2023; 24:357. [PMID: 37740195 PMCID: PMC10517492 DOI: 10.1186/s12859-023-05475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Plant vacuoles are essential organelles in the growth and development of plants, and accurate identification of their proteins is crucial for understanding their biological properties. In this study, we developed a novel model called GraphIdn for the identification of plant vacuole proteins. The model uses SeqVec, a deep representation learning model, to initialize the amino acid sequence. We utilized the AlphaFold2 algorithm to obtain the structural information of corresponding plant vacuole proteins, and then fed the calculated contact maps into a graph convolutional neural network. GraphIdn achieved accuracy values of 88.51% and 89.93% in independent testing and fivefold cross-validation, respectively, outperforming previous state-of-the-art predictors. As far as we know, this is the first model to use predicted protein topology structure graphs to identify plant vacuole proteins. Furthermore, we assessed the effectiveness and generalization capability of our GraphIdn model by applying it to identify and locate peroxisomal proteins, which yielded promising outcomes. The source code and datasets can be accessed at https://github.com/SJNNNN/GraphIdn .
Collapse
Affiliation(s)
- Jianan Sui
- School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Jiazi Chen
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-Shi, Fukuoka, Japan
| | - Yuehui Chen
- School of Artificial Intelligence Institute and Information Science and Engineering, University of Jinan, Jinan, China.
| | - Naoki Iwamori
- Laboratory of Zoology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka-Shi, Fukuoka, Japan
| | - Jin Sun
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
3
|
Liu S, Cui C, Chen H, Liu T. Ensemble Learning-Based Feature Selection for Phage Protein Prediction. Front Microbiol 2022; 13:932661. [PMID: 35910662 PMCID: PMC9335128 DOI: 10.3389/fmicb.2022.932661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Phage has high specificity for its host recognition. As a natural enemy of bacteria, it has been used to treat super bacteria many times. Identifying phage proteins from the original sequence is very important for understanding the relationship between phage and host bacteria and developing new antimicrobial agents. However, traditional experimental methods are both expensive and time-consuming. In this study, an ensemble learning-based feature selection method is proposed to find important features for phage protein identification. The method uses four types of protein sequence-derived features, quantifies the importance of each feature by adding perturbations to the features to influence the results, and finally splices the important features among the four types of features. In addition, we analyzed the selected features and their biological significance.
Collapse
Affiliation(s)
- Songbo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chengmin Cui
- Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing, China
| | - Huipeng Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- *Correspondence: Huipeng Chen
| | - Tong Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
4
|
da Silva RA, Roda VMDP, Matsuda M, Siqueira PV, Lustoza-Costa GJ, Wu DC, Hamassaki DE. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 2021; 260:1435-1444. [PMID: 34842983 DOI: 10.1007/s00417-021-05492-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic epiretinal membrane (iERM) is a fibrocellular proliferation on the inner surface of the retina, which leads to decreased visual acuity and even central visual loss. As iERM is associated to advanced age and posterior vitreous detachment, a higher prevalence is expected with increasing life expectancy and aging of the global population. Although various cell types of retinal and extra-retinal origin have been described in iERMs (Müller glial cells, astrocytes, hyalocytes, retinal pigment epithelium cells, myofibroblasts, and fibroblasts), myofibroblasts have a central role in collagen production and contractile activity. Thus, myofibroblast differentiation is considered a key event for the iERM formation and progression, and fibroblasts, Müller glial cells, hyalocytes, and retinal pigment epithelium have been identified as myofibroblast precursors. On the other side, the different cell types synthesize growth factors, cytokines, and extracellular matrix, which have a crucial role in ERM pathogenesis. In the present review, the major cellular components and their functions are summarized, and their possible roles in the iERM formation are discussed. By exploring in detail the cellular and molecular aspects of iERM, we seek to contribute for better understanding of this fibrotic disease and the origin of myofibroblasts, which may eventually drive to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gabriela Jesus Lustoza-Costa
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi Chen Wu
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Department of Ophthalmology, Irmandade de Misericórdia da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
5
|
Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics 2019; 36:1074-1081. [DOI: 10.1093/bioinformatics/btz734] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Motivation
Mitochondria are an essential organelle in most eukaryotes. They not only play an important role in energy metabolism but also take part in many critical cytopathological processes. Abnormal mitochondria can trigger a series of human diseases, such as Parkinson's disease, multifactor disorder and Type-II diabetes. Protein submitochondrial localization enables the understanding of protein function in studying disease pathogenesis and drug design.
Results
We proposed a new method, SubMito-XGBoost, for protein submitochondrial localization prediction. Three steps are included: (i) the g-gap dipeptide composition (g-gap DC), pseudo-amino acid composition (PseAAC), auto-correlation function (ACF) and Bi-gram position-specific scoring matrix (Bi-gram PSSM) are employed to extract protein sequence features, (ii) Synthetic Minority Oversampling Technique (SMOTE) is used to balance samples, and the ReliefF algorithm is applied for feature selection and (iii) the obtained feature vectors are fed into XGBoost to predict protein submitochondrial locations. SubMito-XGBoost has obtained satisfactory prediction results by the leave-one-out-cross-validation (LOOCV) compared with existing methods. The prediction accuracies of the SubMito-XGBoost method on the two training datasets M317 and M983 were 97.7% and 98.9%, which are 2.8–12.5% and 3.8–9.9% higher than other methods, respectively. The prediction accuracy of the independent test set M495 was 94.8%, which is significantly better than the existing studies. The proposed method also achieves satisfactory predictive performance on plant and non-plant protein submitochondrial datasets. SubMito-XGBoost also plays an important role in new drug design for the treatment of related diseases.
Availability and implementation
The source codes and data are publicly available at https://github.com/QUST-AIBBDRC/SubMito-XGBoost/.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
- School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| | - Wenying Qiu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Cheng Chen
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jing Jiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- School of Aerospace Engineering, Xiamen University, Xiamen 361001, China
| | - Hongyan Zhou
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Predicting Apoptosis Protein Subcellular Locations based on the Protein Overlapping Property Matrix and Tri-Gram Encoding. Int J Mol Sci 2019; 20:ijms20092344. [PMID: 31083553 PMCID: PMC6539631 DOI: 10.3390/ijms20092344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.
Collapse
|
7
|
Yang W, Zhu XJ, Huang J, Ding H, Lin H. A Brief Survey of Machine Learning Methods in Protein Sub-Golgi Localization. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181113131415] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:The location of proteins in a cell can provide important clues to their functions in various biological processes. Thus, the application of machine learning method in the prediction of protein subcellular localization has become a hotspot in bioinformatics. As one of key organelles, the Golgi apparatus is in charge of protein storage, package, and distribution.Objective:The identification of protein location in Golgi apparatus will provide in-depth insights into their functions. Thus, the machine learning-based method of predicting protein location in Golgi apparatus has been extensively explored. The development of protein sub-Golgi apparatus localization prediction should be reviewed for providing a whole background for the fields.Method:The benchmark dataset, feature extraction, machine learning method and published results were summarized.Results:We briefly introduced the recent progresses in protein sub-Golgi apparatus localization prediction using machine learning methods and discussed their advantages and disadvantages.Conclusion:We pointed out the perspective of machine learning methods in protein sub-Golgi localization prediction.
Collapse
Affiliation(s)
- Wuritu Yang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xiao-Juan Zhu
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jian Huang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
8
|
Tian B, Wu X, Chen C, Qiu W, Ma Q, Yu B. Predicting protein–protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach. J Theor Biol 2019; 462:329-346. [DOI: 10.1016/j.jtbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
|
9
|
Du PF, Zhao W, Miao YY, Wei LY, Wang L. UltraPse: A Universal and Extensible Software Platform for Representing Biological Sequences. Int J Mol Sci 2017; 18:ijms18112400. [PMID: 29135934 PMCID: PMC5713368 DOI: 10.3390/ijms18112400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 01/12/2023] Open
Abstract
With the avalanche of biological sequences in public databases, one of the most challenging problems in computational biology is to predict their biological functions and cellular attributes. Most of the existing prediction algorithms can only handle fixed-length numerical vectors. Therefore, it is important to be able to represent biological sequences with various lengths using fixed-length numerical vectors. Although several algorithms, as well as software implementations, have been developed to address this problem, these existing programs can only provide a fixed number of representation modes. Every time a new sequence representation mode is developed, a new program will be needed. In this paper, we propose the UltraPse as a universal software platform for this problem. The function of the UltraPse is not only to generate various existing sequence representation modes, but also to simplify all future programming works in developing novel representation modes. The extensibility of UltraPse is particularly enhanced. It allows the users to define their own representation mode, their own physicochemical properties, or even their own types of biological sequences. Moreover, UltraPse is also the fastest software of its kind. The source code package, as well as the executables for both Linux and Windows platforms, can be downloaded from the GitHub repository.
Collapse
Affiliation(s)
- Pu-Feng Du
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Wei Zhao
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Yang-Yang Miao
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
- School of Chemical Engineering, Tianjin University, Tianjin 300350, China.
| | - Le-Yi Wei
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| | - Likun Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
10
|
Du PF. Predicting Protein Submitochondrial Locations: The 10th Anniversary. Curr Genomics 2017; 18:316-321. [PMID: 29081687 PMCID: PMC5635615 DOI: 10.2174/1389202918666170228143256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/16/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022] Open
Abstract
Predicting protein submitochondrial location has been studied for about ten years. A number of methods have been developed. The prediction performances have been improved to an almost perfect level. In this review, we introduce the background of this research topic. We also compare the methods, the performances and the datasets that have been used by these studies. Towards the end, we provide hints for the future directions of this research topic.
Collapse
Affiliation(s)
- Pu-Feng Du
- School of Computer Science and Technology, Tianjin University, Tianjin300350, China
| |
Collapse
|
11
|
Jiao YS, Du PF. Predicting protein submitochondrial locations by incorporating the positional-specific physicochemical properties into Chou's general pseudo-amino acid compositions. J Theor Biol 2017; 416:81-87. [DOI: 10.1016/j.jtbi.2016.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/06/2016] [Accepted: 12/30/2016] [Indexed: 11/26/2022]
|