1
|
Huang BS, Chen CT, Yeh CC, Fan TY, Chen FY, Liou JM, Shun CT, Wu MS, Chow LP. miR-21 Targets ASPP2 to Inhibit Apoptosis via CHOP-Mediated Signaling in Helicobacter pylori-Infected Gastric Cancer Cells. JOURNAL OF ONCOLOGY 2023; 2023:6675265. [PMID: 37547633 PMCID: PMC10403333 DOI: 10.1155/2023/6675265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Helicobacter pylori (H. pylori) infection affects cell survival pathways, including apoptosis and proliferation in host cells, and disruption of this balance is the key event in the development of H. pylori-induced gastric cancer (HPGC). H. pylori infection induces alterations in microRNAs expression that may be involved in GC development. Bioinformatic analysis showed that microRNA-21 (miR-21) is significantly upregulated in HPGC. Furthermore, quantitative proteomics and in silico prediction were employed to identify potential targets of miR-21. Following functional enrichment and clustered interaction network analyses, five candidates of miR-21 targets, PDCD4, ASPP2, DAXX, PIK3R1, and MAP3K1, were found across three functional clusters in association with cell death and survival, cellular movement, and cellular growth and proliferation. ASPP2 is inhibited by H. pylori-induced miR-21 overexpression. Moreover, ASPP2 levels are inversely correlated with miR-21 levels in HPGC tumor tissues. Thus, ASPP2 was identified as a miR-21 target in HPGC. Here, we observed that H. pylori-induced ASPP2 suppression enhances resistance to apoptosis in GC cells using apoptosis assays. Using protein interaction network and coimmunoprecipitation assay, we identified CHOP as a direct mediator of the ASPP2 proapoptotic activity in H. pylori-infected GC cells. Mechanistically, ASPP2 suppression promotes p300-mediated CHOP degradation, in turn inhibiting CHOP-mediated transcription of Noxa, Bak, and suppression of Bcl-2 to enact antiapoptosis in the GC cells after H. pylori infection. Clinicopathological analysis revealed correlations between decreased ASPP2 expression and higher HPGC risk and poor prognosis. In summary, the discovery of H. pylori-induced antiapoptosis via miR-21-mediated suppression of ASPP2/CHOP-mediated signaling provides a novel perspective for developing HPGC management and treatment.
Collapse
Affiliation(s)
- Bo-Shih Huang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Yeh
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Fan
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fang-Yun Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Shimada H, Kohno T, Konno T, Okada T, Saito K, Shindo Y, Kikuchi S, Tsujiwaki M, Ogawa M, Matsuura M, Saito T, Kojima T. The Roles of Tricellular Tight Junction Protein Angulin-1/Lipolysis-Stimulated Lipoprotein Receptor (LSR) in Endometriosis and Endometrioid-Endometrial Carcinoma. Cancers (Basel) 2021; 13:6341. [PMID: 34944960 PMCID: PMC8699113 DOI: 10.3390/cancers13246341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022] Open
Abstract
Tight junction proteins play roles beyond permeability barriers functions and control cell proliferation and differentiation. The relation between tight junctions and the signal transduction pathways affects cell growth, invasion and migration. Abnormality of tight junction proteins closely contributes to epithelial mesenchymal transition (EMT) and malignancy of various cancers. Angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) forms tricellular contacts that has a barrier function. Downregulation of angulin-1/LSR correlates with the malignancy in various cancers, including endometrioid-endometrial carcinoma (EEC). These alterations have been shown to link to not only multiple signaling pathways such as Hippo/YAP, HDAC, AMPK, but also cell metabolism in ECC cell line Sawano. Moreover, loss of angulin-1/LSR upregulates claudin-1, and loss of apoptosis stimulating p53 protein 2 (ASPP2) downregulates angulin-1/LSR. Angulin-1/LSR and ASPP2 concentrate at both midbody and centrosome in cytokinesis. In EEC tissues, angulin-1/LSR and ASPP2 are reduced and claudin-2 is overexpressed during malignancy, while in the tissues of endometriosis changes in localization of angulin-1/LSR and claudin-2 are seen. This review highlights how downregulation of angulin-1/LSR promotes development of endometriosis and EEC and discusses about the roles of angulin-1/LSR and its related proteins, including claudins and ASPP2.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Tadahi Okada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Kimihito Saito
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Marie Ogawa
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Motoki Matsuura
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Tsuyoshi Saito
- Departments of Obstetrics, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.O.); (M.M.); (T.S.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (H.S.); (T.K.); (T.O.); (K.S.); (Y.S.)
| |
Collapse
|
3
|
ASPP2 suppression promotes malignancy via LSR and YAP in human endometrial cancer. Histochem Cell Biol 2020; 154:197-213. [PMID: 32266459 DOI: 10.1007/s00418-020-01876-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis-stimulating p53 protein 2 (ASPP2) is an apoptosis inducer that acts via binding with p53 and epithelial polarity molecule PAR3. Lipolysis-stimulated lipoprotein receptor (LSR) is an important molecule at tricellular contacts, and loss of LSR promotes cell migration and invasion via Yes-associated protein (YAP) in human endometrial cancer cells. In the present study, to find how ASPP2 suppression promotes malignancy in human endometrial cancer, we investigated its mechanisms including the relationship with LSR. In endometriosis and endometrial cancers (G1 and G2), ASPP2 was observed as well as PAR3 and LSR in the subapical region. ASPP2 decreased in G3 endometrial cancer compared to G1. In human endometrial cancer cell line Sawano, ASPP2 was colocalized with LSR and tricellulin at tricellular contacts and binding to PAR3, LSR, and tricellulin in the confluent state. ASPP2 suppression promoted cell migration and invasion, decreased LSR expression, and induced expression of phosphorylated YAP, claudin-1, -4, and -7 as effectively as the loss of LSR. Knockdown of YAP prevented the upregulation of pYAP, cell migration and invasion induced by the ASPP2 suppression. Treatment with a specific antibody against ASPP2 downregulated ASPP2 and LSR, affected F-actin at tricellular contacts, upregulated expression of pYAP and claudin-1, and induced cell migration and invasion via YAP. In normal human endometrial epithelial cells, ASPP2 was in part colocalized with LSR at tricellular contacts and knockdown of ASPP2 or LSR induced expression of claudin-1 and claudin-4. ASPP2 suppression promoted cell invasion and migration via LSR and YAP in human endometrial cancer cells.
Collapse
|
4
|
Iosub-Amir A, Bai F, Sohn YS, Song L, Tamir S, Marjault HB, Mayer G, Karmi O, Jennings PA, Mittler R, Onuchic JN, Friedler A, Nechushtai R. The anti-apoptotic proteins NAF-1 and iASPP interact to drive apoptosis in cancer cells. Chem Sci 2018; 10:665-673. [PMID: 30774867 PMCID: PMC6349067 DOI: 10.1039/c8sc03390k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
We reveal a novel interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells, and propose that this interaction is required for apoptosis activation in cancer cells. A peptide derived from the interaction interface inhibits apoptosis in cells.
Suppression of apoptosis is a key Hallmark of cancer cells, and reactivation of apoptosis is a major avenue for cancer therapy. We reveal an interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells and tumors. iASPP is an inhibitory member of the ASPP protein family, whereas NAF-1 belongs to the NEET 2Fe–2S protein family. We show that the two proteins are stimulated to interact in cells during apoptosis. Using peptide array screening and computational methods we mapped the interaction interfaces of both proteins to residues 764–778 of iASPP that bind to a surface groove of NAF-1. A peptide corresponding to the iASPP 764–780 sequence stabilized the NAF-1 cluster, inhibited NAF-1 interaction with iASPP, and inhibited staurosporine-induced apoptosis activation in human breast cancer, as well as in PC-3 prostate cancer cells in which p53 is inactive. The iASPP 764–780 IC50 value for inhibition of cell death in breast cancer cells was 13 ± 1 μM. The level of cell death inhibition by iASPP 764–780 was altered in breast cancer cells expressing different levels and/or variants of NAF-1, indicating that the peptide activity is associated with NAF-1 function. We propose that the interaction between iASPP and NAF-1 is required for apoptosis activation in cancer cells. This interaction uncovers a new layer in the highly complex regulation of cell death in cancer cells and opens new avenues of exploration into the development of novel anticancer drugs that reactivate apoptosis in malignant tumors.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Fang Bai
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Yang-Sung Sohn
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Luhua Song
- Department of Biological Sciences , University of North Texas , Denton , TX 76203 , USA
| | - Sagi Tamir
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Guy Mayer
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Patricia A Jennings
- Department of Chemistry & Biochemistry , University of California at San Diego , La Jolla , CA 92093 , USA
| | - Ron Mittler
- Department of Surgery , University of Missouri School of Medicine , Christopher S. Bond Life Sciences Center , University of Missouri , 1201 Rollins St , Columbia , MO 65201 , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics , Department of Physics , Rice University , Houston , TX 77005 , USA .
| | - Assaf Friedler
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science , The Hebrew University of Jerusalem , Edmond J. Safra Campus at Givat Ram , Jerusalem 91904 , Israel .
| |
Collapse
|
5
|
Li H, Wang X, Zhang C, Cheng Y, Yu M, Zhao K, Ge W, Cai A, Zhang Y, Han F, Hu Y. HDAC1-induced epigenetic silencing of ASPP2 promotes cell motility, tumour growth and drug resistance in renal cell carcinoma. Cancer Lett 2018; 432:121-131. [DOI: 10.1016/j.canlet.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
|
6
|
Song X, Du J, Zhu W, Jin P, Ma F. Identification and characterization of an apoptosis-stimulating protein of p53 (ASPP) gene from Branchiostoma belcheri: Insights into evolution of ASPP gene family. FISH & SHELLFISH IMMUNOLOGY 2016; 49:268-274. [PMID: 26747639 DOI: 10.1016/j.fsi.2015.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
The ASPP (apoptosis-stimulating protein of p53) protein family plays very key roles in apoptosis regulation, in both p53-dependent and p53-independent pathways. However, the ASPP homologous gene has not been identified in amphioxus to date. Here, we identified and characterized an ASPP gene from Branchiostoma belcheri (designed as AmphiASPP) and extensively studied its evolution and roles involved in innate immunity. The results showed that the amphioxus genome has an ASPP homolog gene with an ORF of 3285 bp, encoding 1094 amino acids which contains ANK repeats and SK3 domain. The evolutionary analyses indicated that the members of ASPP protein family might be present in a common ancestor of Nematostella vectensis and underwent positive selective in the evolutionary history. In addition, the amphioxus ASPP gene was ubiquitously and differentially expressed in five investigated tissues, and the amphioxus ASPP gene was involved in the innate immune response of LPS and LTA stimulation. Finally, bioinformatic analyses displayed that amphioxus ASPP protein could interact with REL protein by conserved binding sites compared with human ASPP2 protein, which seemed to further suggest that the amphioxus ASPP protein involve in innate immunity through NF-кB signaling pathway. Taken together, our findings provided an insight into the evolution and innate immunity function of the ASPP family.
Collapse
Affiliation(s)
- Xiaojun Song
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, PR China; Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.
| | - Juan Du
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wei Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China.
| |
Collapse
|
7
|
Highly homologous proteins exert opposite biological activities by using different interaction interfaces. Sci Rep 2015; 5:11629. [PMID: 26130271 PMCID: PMC4486954 DOI: 10.1038/srep11629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/02/2015] [Indexed: 11/08/2022] Open
Abstract
We present a possible molecular basis for the opposite activity of two homologues proteins that bind similar ligands and show that this is achieved by fine-tuning of the interaction interface. The highly homologous ASPP proteins have opposite roles in regulating apoptosis: ASPP2 induces apoptosis while iASPP inhibits it. The ASPP proteins are regulated by an autoinhibitory interaction between their Ank-SH3 and Pro domains. We performed a detailed biophysical and molecular study of the Pro - Ank-SH3 interaction in iASPP and compared it to the interaction in ASPP2. We found that iASPP Pro is disordered and that the interaction sites are entirely different: iASPP Ank-SH3 binds iASPP Pro via its fourth Ank repeat and RT loop while ASPP2 Ank-SH3 binds ASPP2 Pro via its first Ank repeat and the n-src loop. It is possible that by using different moieties in the same interface, the proteins can have distinct and specific interactions resulting in differential regulation and ultimately different biological activities.
Collapse
|
8
|
Reingewertz TH, Iosub-Amir A, Bonsor DA, Mayer G, Amartely H, Friedler A, Sundberg EJ. An Intrinsically Disordered Region in the Proapoptotic ASPP2 Protein Binds to the Helicobacter pylori Oncoprotein CagA. Biochemistry 2015; 54:3337-47. [PMID: 25963096 DOI: 10.1021/acs.biochem.5b00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading risk factor for gastric cancer in humans is infection by Helicobacter pylori strains that express and translocate the oncoprotein CagA into host epithelial cells. Once inside host cells, CagA interacts with ASPP2, which specifically stimulates p53-mediated apoptosis and reverses its pro-apoptotic function to promote ASPP2-dependent degradation of p53. The X-ray crystal structure of a complex between the N-terminal domain of CagA and a 56-residue fragment of ASPP2, of which 22 residues were resolved, was recently described. Here, we present biochemical and biophysical analyses of the interaction between the additional regions of CagA and ASPP2 potentially involved in this interaction. Using size exclusion chromatography-multiangle laser light scattering, circular dichroism, and nuclear magnetic resonance analyses, we observed that the ASPP2 region spanning residues 331-692, which was not part of the ASPP2 fragment used for crystallization, is intrinsically disordered in its unbound state. By surface plasmon resonance analysis and isothermal titration calorimetry, we found that a portion of this disordered region in ASPP2, residues 448-692, binds to the N-terminal domain of CagA. We also measured the affinity of the complex between the ASPP2 fragment composed of residues 693-918 and inclusive of the fragment used for crystallization and CagA. Additionally, we mapped the binding regions between ASPP2 and CagA using peptide arrays, demonstrating interactions between CagA and numerous peptides distributed throughout the ASPP2 protein sequence. Our results identify previously uncharacterized regions distributed throughout the protein sequence of ASPP2 as determinants of CagA binding, providing mechanistic insight into apoptosis reprogramming by CagA and potential new drug targets for H. pylori-mediated gastric cancer.
Collapse
Affiliation(s)
| | - Anat Iosub-Amir
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Guy Mayer
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Amartely
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Assaf Friedler
- ‡Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
9
|
Cui H, Dhroso A, Johnson N, Korkin D. The variation game: Cracking complex genetic disorders with NGS and omics data. Methods 2015; 79-80:18-31. [PMID: 25944472 DOI: 10.1016/j.ymeth.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.
Collapse
Affiliation(s)
- Hongzhu Cui
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Andi Dhroso
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Nathan Johnson
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|