1
|
Lin YY, Müller P, Karagianni E, Hepp N, Mueller-Planitz F, Vanderlinden W, Lipfert J. Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms. J Mol Biol 2024; 436:168671. [PMID: 38908785 DOI: 10.1016/j.jmb.2024.168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions. Direct visualization by AFM imaging reveals that H3K36me3 and H4K5/8/12/16ac nucleosomes adopt significantly more open and loose conformations than unmodified nucleosomes. Similarly, magnetic tweezers force spectroscopy shows a reduction in DNA outer turn wrapping and nucleosome-nucleosome interactions for the modified nucleosomes. The results suggest that for H3K36me3 the increased breathing and outer DNA turn unwrapping seen in mononucleosomes propagates to more open conformations in nucleosome arrays. In contrast, the even more open structures of H4K5/8/12/16ac nucleosome arrays do not appear to derive from the dynamics of the constituent mononucleosomes, but are driven by reduced nucleosome-nucleosome interactions, suggesting that stacking interactions can overrule DNA breathing of individual nucleosomes. We anticipate that our methodology will be broadly applicable to reveal the influence of other post-translational modifications and to observe the activity of nucleosome remodelers.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Peter Müller
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Evdoxia Karagianni
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands; School of Physics and Astronomy, University of Edinburg, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
2
|
Brouns T, Lux V, Van Belle S, Christ F, Veverka V, Debyser Z. The Impact of Lens Epithelium-Derived Growth Factor p75 Dimerization on Its Tethering Function. Cells 2024; 13:227. [PMID: 38334618 PMCID: PMC10854676 DOI: 10.3390/cells13030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.
Collapse
Affiliation(s)
- Tine Brouns
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16000 Prague, Czech Republic; (V.L.); (V.V.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (T.B.); (S.V.B.); (F.C.)
| |
Collapse
|
3
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
4
|
Lin YY, Brouns T, Kolbeck PJ, Vanderlinden W, Lipfert J. High-yield ligation-free assembly of DNA constructs with nucleosome positioning sequence repeats for single-molecule manipulation assays. J Biol Chem 2023; 299:104874. [PMID: 37257819 PMCID: PMC10404619 DOI: 10.1016/j.jbc.2023.104874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Force and torque spectroscopy have provided unprecedented insights into the mechanical properties, conformational transitions, and dynamics of DNA and DNA-protein complexes, notably nucleosomes. Reliable single-molecule manipulation measurements require, however, specific and stable attachment chemistries to tether the molecules of interest. Here, we present a functionalization strategy for DNA that enables high-yield production of constructs for torsionally constrained and very stable attachment. The method is based on two subsequent PCRs: first ∼380 bp long DNA strands are generated that contain multiple labels, which are used as "megaprimers" in a second PCR to generate ∼kbp long double-stranded DNA constructs with multiple labels at the respective ends. To achieve high-force stability, we use dibenzocyclooctyne-based click chemistry for covalent attachment to the surface and biotin-streptavidin coupling to the bead. The resulting tethers are torsionally constrained and extremely stable under load, with an average lifetime of 70 ± 3 h at 45 pN. The high yield of the approach enables nucleosome reconstitution by salt dialysis on the functionalized DNA, and we demonstrate proof-of-concept measurements on nucleosome assembly statistics and inner turn unwrapping under force. We anticipate that our approach will facilitate a range of studies of DNA interactions and nucleoprotein complexes under forces and torques.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tine Brouns
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany; Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Pauline J Kolbeck
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Kolbeck P, Dass M, Martynenko IV, van Dijk-Moes RJA, Brouwer KJH, van Blaaderen A, Vanderlinden W, Liedl T, Lipfert J. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. NANO LETTERS 2023; 23:1236-1243. [PMID: 36745573 PMCID: PMC9951250 DOI: 10.1021/acs.nanolett.2c04299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
Collapse
Affiliation(s)
- Pauline
J. Kolbeck
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Mihir Dass
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Irina V. Martynenko
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Relinde J. A. van Dijk-Moes
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Kelly J. H. Brouwer
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Alfons van Blaaderen
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Willem Vanderlinden
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Tim Liedl
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Jan Lipfert
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| |
Collapse
|
6
|
Konrad SF, Vanderlinden W, Frederickx W, Brouns T, Menze BH, De Feyter S, Lipfert J. High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes. NANOSCALE 2021; 13:5435-5447. [PMID: 33683227 DOI: 10.1039/d0nr08564b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ∼10 000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but in contrast to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Notably, centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes. Finally, our results reconcile previous conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability and to facilitate future high-throughput AFM studies that involve heterogeneous nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F Konrad
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Wout Frederickx
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Tine Brouns
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Björn H Menze
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Steven De Feyter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| |
Collapse
|
7
|
Molecular Mechanism of LEDGF/p75 Dimerization. Structure 2020; 28:1288-1299.e7. [DOI: 10.1016/j.str.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/19/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
|
8
|
Abstract
Retroviral integration, the process of covalently inserting viral DNA into the host genome, is a point of no return in the replication cycle. Yet, strand transfer is intrinsically iso-energetic and it is not clear how efficient integration can be achieved. Here we investigate the dynamics of strand transfer and demonstrate that consecutive nucleoprotein intermediates interacting with a supercoiled target are increasingly stable, resulting in a net forward rate. Multivalent target interactions at discrete auxiliary interfaces render target capture irreversible, while allowing dynamic site selection. Active site binding is transient but rapidly results in strand transfer, which in turn rearranges and stabilizes the intasome in an allosteric manner. We find the resulting strand transfer complex to be mechanically stable and extremely long-lived, suggesting that a resolving agent is required in vivo.
Collapse
|
9
|
Mahler M, Andrade LE, Casiano CA, Malyavantham K, Fritzler MJ. Anti-DFS70 antibodies: an update on our current understanding and their clinical usefulness. Expert Rev Clin Immunol 2019; 15:241-250. [DOI: 10.1080/1744666x.2019.1562903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael Mahler
- Research & Development, Inova Diagnostics, San Diego, CA, USA
| | - Luis E. Andrade
- Rheumatology Division, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Immunology Division, Fleury Laboratories, São Paulo, Brazil
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | |
Collapse
|
10
|
Brouns T, De Keersmaecker H, Konrad SF, Kodera N, Ando T, Lipfert J, De Feyter S, Vanderlinden W. Free Energy Landscape and Dynamics of Supercoiled DNA by High-Speed Atomic Force Microscopy. ACS NANO 2018; 12:11907-11916. [PMID: 30346700 DOI: 10.1021/acsnano.8b06994] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA supercoiling fundamentally constrains and regulates the storage and use of genetic information. While the equilibrium properties of supercoiled DNA are relatively well understood, the dynamics of supercoils are much harder to probe. Here we use atomic force microscopy (AFM) imaging to demonstrate that positively supercoiled DNA plasmids, in contrast to their negatively supercoiled counterparts, preserve their plectonemic geometry upon adsorption under conditions that allow for dynamics and equilibration on the surface. Our results are in quantitative agreement with a physical polymer model for supercoiled plasmids that takes into account the known mechanical properties and torque-induced melting of DNA. We directly probe supercoil dynamics using high-speed AFM imaging with subsecond time and ∼nanometer spatial resolution. From our recordings we quantify self-diffusion, branch point flexibility, and slithering dynamics and demonstrate that reconfiguration of molecular extensions is predominantly governed by the bending flexibility of plectoneme arms. We expect that our methodology can be an asset to probe protein-DNA interactions and topochemical reactions on physiological relevant DNA length and supercoiling scales by high-resolution AFM imaging.
Collapse
Affiliation(s)
- Tine Brouns
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Herlinde De Keersmaecker
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Sebastian F Konrad
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Noriyuki Kodera
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Toshio Ando
- Nano-Life Science Institute (WPI-NanoLSI) , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan
| | - Jan Lipfert
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| | - Steven De Feyter
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Willem Vanderlinden
- KU Leuven, Division of Molecular Imaging and Photonics , Celestijnenlaan 200F , 3001 Leuven , Belgium
- Department of Physics , Nanosystems Initiative Munich, and Center for NanoScience , LMU Munich, Amalienstrasse 54 , 80799 Munich , Germany
| |
Collapse
|
11
|
Frederickx W, Rocha S, Fujita Y, Kennes K, De Keersmaecker H, De Feyter S, Uji-I H, Vanderlinden W. Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. ACS NANO 2018; 12:168-177. [PMID: 29257876 DOI: 10.1021/acsnano.7b05405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Correlative imaging by fluorescence and force microscopy is an emerging technology to acquire orthogonal information at the nanoscale. Whereas atomic force microscopy excels at resolving the envelope structure of nanoscale specimens, fluorescence microscopy can detect specific molecular labels, which enables the unambiguous recognition of molecules in a complex assembly. Whereas correlative imaging at the micrometer scale has been established, it remains challenging to push the technology to the single-molecule level. Here, we used an integrated setup to systematically evaluate the factors that influence the quality of correlative fluorescence and force microscopy. Optimized data processing to ensure accurate drift correction and high localization precision results in image registration accuracies of ∼25 nm on organic fluorophores, which represents a 2-fold improvement over the state of the art in correlative fluorescence and force microscopy. Furthermore, we could extend the Atto532 fluorophore bleaching time ∼2-fold, by chemical modification of the supporting mica surface. In turn, this enables probing the composition of macromolecular complexes by stepwise photobleaching with high confidence. We demonstrate the performance of our method by resolving the stoichiometry of molecular subpopulations in a heterogeneous EcoRV-DNA nucleoprotein ensemble.
Collapse
Affiliation(s)
- Wout Frederickx
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Koen Kennes
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Herlinde De Keersmaecker
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Research Institute for Electronic Science, Nanomaterials and Nanoscopy, Hokkaido University , Kita 10 Nishi 20, North Ward, Sapporo 001-0020, Japan
| | - Willem Vanderlinden
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
12
|
Evolution of AF6-RAS association and its implications in mixed-lineage leukemia. Nat Commun 2017; 8:1099. [PMID: 29062045 PMCID: PMC5653649 DOI: 10.1038/s41467-017-01326-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2017] [Indexed: 12/31/2022] Open
Abstract
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements. Several rearrangements of the MLL gene are associated with acute leukemia, including the fusion of MLL with a RAS effector protein, AF6. Here the authors show that the truncated AF6 can induce AF6-MLL dimerization and drive its oncogenic activity.
Collapse
|
13
|
Nomidis SK, Kriegel F, Vanderlinden W, Lipfert J, Carlon E. Twist-Bend Coupling and the Torsional Response of Double-Stranded DNA. PHYSICAL REVIEW LETTERS 2017; 118:217801. [PMID: 28598642 DOI: 10.1103/physrevlett.118.217801] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 06/07/2023]
Abstract
Recent magnetic tweezers experiments have reported systematic deviations of the twist response of double-stranded DNA from the predictions of the twistable wormlike chain model. Here we show, by means of analytical results and computer simulations, that these discrepancies can be resolved if a coupling between twist and bend is introduced. We obtain an estimate of 40±10 nm for the twist-bend coupling constant. Our simulations are in good agreement with high-resolution, magnetic-tweezers torque data. Although the existence of twist-bend coupling was predicted long ago [J. Marko and E. Siggia, Macromolecules 27, 981 (1994)MAMOBX0024-929710.1021/ma00082a015], its effects on the mechanical properties of DNA have been so far largely unexplored. We expect that this coupling plays an important role in several aspects of DNA statics and dynamics.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Franziska Kriegel
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Willem Vanderlinden
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- KU Leuven, Division of Molecular Imaging and Photonics, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Enrico Carlon
- KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016; 8:101-111. [PMID: 28510219 DOI: 10.1007/s12551-016-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023] Open
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| |
Collapse
|
16
|
von Willebrand factor is dimerized by protein disulfide isomerase. Blood 2016; 127:1183-91. [DOI: 10.1182/blood-2015-04-641902] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/08/2015] [Indexed: 01/03/2023] Open
Abstract
Key Points
The protein disulfide isomerase is involved in VWF dimerization by initiating disulfide bond formation at cysteines 2771 and 2773. von Willebrand disease-associated mutations in the dimerization domain of von Willebrand factor disturb processing by the protein disulfide isomerase.
Collapse
|
17
|
Tesina P, Čermáková K, Hořejší M, Procházková K, Fábry M, Sharma S, Christ F, Demeulemeester J, Debyser Z, Rijck JD, Veverka V, Řezáčová P. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif. Nat Commun 2015; 6:7968. [PMID: 26245978 DOI: 10.1038/ncomms8968] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.
Collapse
Affiliation(s)
- Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Čermáková
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Magdalena Hořejší
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kateřina Procházková
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Subhalakshmi Sharma
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Frauke Christ
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jonas Demeulemeester
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Kapucijnenvoer 33, B-3000 Leuven, Belgium
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Flemingovo nam. 2, 166 10 Prague, Czech Republic.,Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
18
|
Thomson NH, Santos S, Mitchenall LA, Stuchinskaya T, Taylor JA, Maxwell A. DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Sci Rep 2014; 4:6158. [PMID: 25142513 PMCID: PMC4139952 DOI: 10.1038/srep06158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate' may be an important determinant of this process.
Collapse
Affiliation(s)
- Neil H Thomson
- Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sergio Santos
- 1] Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom [2]
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tanya Stuchinskaya
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - James A Taylor
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|