1
|
Zheng X, Padmajan Sasikala S, Kim Y, Kim TD, Lee GS, Kim JT, Kim SO, Prabhakaran P. Dimension-engineered gold heterostructures with transition metal dichalcogenide for efficient overall water splitting. J Colloid Interface Sci 2025; 686:516-524. [PMID: 39914297 DOI: 10.1016/j.jcis.2025.01.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Metallic 1T' phase two-dimensional (2D) MoS2 is regarded as one of the most promising transition metal chalcogenide catalysts for hydrogen evolution reaction (HER). However, the poor oxygen evolution reaction (OER) performance of 1T' MoS2 makes it challenging to use as a bi-functional catalyst for water splitting. Here, we compare the bi-functional electrocatalytic properties of gold heterostructures with 1T' MoS2 consisting of 4 nm thick 2D Au nanosheets (few layer goldene, FG), 20 nm thick quasi-2D Au nanoplatelets (Au plate) and 250 nm thick Au nanoparticles (Au NPs). Our findings reveal that MoS2-FG and MoS2-Au plate 2D heterostructures, characterized by a high density of low-coordinated Au atoms, induce significant strain within the MoS2 crystal lattice. This strain contributes to the exceptional bi-functional electrocatalytic performance for both HER/OER activities. By leveraging the nanoscale structure of Au and its synergistic interaction with MoS2, we demonstrate the development of highly efficient, device-ready catalysts, offering significant potential for advancing renewable energy technologies.
Collapse
Affiliation(s)
- Xiangming Zheng
- Department of Advanced Materials, Hannam University, Daejeon 34054 South Korea
| | - Suchithra Padmajan Sasikala
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 192, Yuseong-gu, Daejeon 34141 South Korea.
| | - Yoon Kim
- Department of Advanced Materials, Hannam University, Daejeon 34054 South Korea
| | - Tae-Dong Kim
- Department of Advanced Materials, Hannam University, Daejeon 34054 South Korea
| | - Gang San Lee
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 192, Yuseong-gu, Daejeon 34141 South Korea
| | - Jun Tae Kim
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 192, Yuseong-gu, Daejeon 34141 South Korea
| | - Sang Ouk Kim
- Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 192, Yuseong-gu, Daejeon 34141 South Korea.
| | - Prem Prabhakaran
- Department of Advanced Materials, Hannam University, Daejeon 34054 South Korea.
| |
Collapse
|
2
|
Ji J, Wang J, Jiang T, Chen Z, Wang Z, Feng Y. Engineering the Blackbody Absorption of the Au-Branch-on-Au-Plate Heterostructures. Inorg Chem 2024; 63:14256-14265. [PMID: 39012859 DOI: 10.1021/acs.inorgchem.4c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Utilizing the strong ligand control effects of l-cysteine (l-Cys), the growth of Au on Au triangular nanoplate (AuTN) seeds was continuously tuned from layer-by-layer (the Frank-van der Merwe) to layer-plus-island (the Stranski-Krastanov), and island (the Volmer-Weber) growth modes, leading to the formation of a series of Au-on-AuTN heterostructures. Within the window of VW growth mode (featured by the growth of Au spikes and branches on AuTNs), the effective localized surface plasmon resonance (LSPR) coupling led to the selective strengthening of the "valley" absorptions, leading to smooth and flat absorption curves. Interestingly, through engineering the number/density, size, and branching degree of the Au branches, except for the black color, full spectrum absorption within 400-1300 nm wavelength was achieved on Au-branch-on-AuTN structures. Mechanistic studies revealed that the blackbody absorption property of the Au-branch-on-AuTN originates from the well-balanced intraparticle LSPR couplings among the neighboring Au branches. The tunable blackness and the full spectrum absorption property made the Au-branch-on-AuTN heterostructure a suitable candidate for various plasmonic-related applications, such as a wide spectrum light absorber, photoacoustic imaging contrast agent, and photothermal therapy medium. In addition, our strong ligand control in Au-branch-on-AuTN heterostructures could be extended to other hybrid systems with diverse material combinations, so long as to find the proper strong ligand.
Collapse
Affiliation(s)
- Jin Ji
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Junsheng Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tingting Jiang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zijie Chen
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhiwei Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuhua Feng
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Sun Y, Su A, Zhao L, Liu X, Liu X, Wang Y, Chen H. Shearing-induced formation of Au nanowires. Chem Sci 2024; 15:10164-10171. [PMID: 38966378 PMCID: PMC11220615 DOI: 10.1039/d4sc01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Shearing-induced nucleation is known in our daily lives, yet rarely discussed in nano-synthesis. Here, we demonstrate an unambiguous shearing-induced growth of Au nanowires. While in static solution Au would predominately deposit on pre-synthesized triangular nanoplates to form nano-bowls, the introduction of stirring or shaking gives rise to nanowires, where an initial nucleation could be inferred. Under specific growth conditions, CTAB is responsible for stabilizing the growth materials and the resulting oversaturation promotes shearing-induced nucleation. At the same time, all Au surfaces are passivated by ligands, so that the growth materials are diverted to relatively fresher sites. We propose that the different degrees of "focused growth" in active surface growth could be represented by watersheds of different slopes, so that the subtle differences between neighbouring sites would set course to opposite pathways, with some sites becoming ever more active and others ever more inhibited. The shearing-induced nuclei, with their initially ligand-deficient surface and higher accessibility to growth materials, win the dynamic inter-particle competition against other sites, explaining the dramatic diversion of growth materials from the seeds to the nanowires.
Collapse
Affiliation(s)
- Yiwen Sun
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University Hangzhou 310030 P. R. China
| | - An Su
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University Hangzhou 310030 P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou 310024 China
| | - Lecheng Zhao
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiaobin Liu
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University Hangzhou 310030 P. R. China
| | - Xueyang Liu
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University Hangzhou 310030 P. R. China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou 310024 China
| |
Collapse
|
4
|
Xie S, Sun W, Sun J, Wan X, Zhang J. Apparent symmetry rising induced by crystallization inhibition in ternary co-crystallization-driven self-assembly. Nat Commun 2023; 14:6496. [PMID: 37838782 PMCID: PMC10576807 DOI: 10.1038/s41467-023-42290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
The concept of apparent symmetry rising, opposite to symmetry breaking, was proposed to illustrate the unusual phenomenon that the symmetry of the apparent morphology of the multiply twinned particle is higher than that of its crystal structure. We developed a unique strategy of co-crystallization-driven self-assembly of amphiphilic block copolymers PEO-b-PS and the inorganic cluster silicotungstic acid to achieve apparent symmetry rising of nanoparticles under mild conditions. The triangular nanoplates triply twinned by orthogonal crystals (low symmetry) have an additional triple symmetry (high symmetry). The appropriate crystallization inhibition of short solvophilic segments of the block copolymers favors the oriented attachment of homogeneous domains of hybrid nanoribbons, and consequently forms kinetic-controlled triangular nanoplates with twin grain boundaries.
Collapse
Affiliation(s)
- Siyu Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Wenjia Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junliang Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|
5
|
Su A, Wang Q, Huang L, Zheng Y, Wang Y, Chen H. Gold nanohexagrams via active surface growth under sole CTAB control. NANOSCALE 2023; 15:14858-14865. [PMID: 37642320 DOI: 10.1039/d3nr03006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The synthesis of homochiral nanostructures involves not only the chiral ligand, but also CTAB. The latter is often treated as a weak ligand unable to compete with the thiol-based chiral ligand. Here, we show that CTAB alone is able to induce Active Surface Growth on Au nanoplates, giving curved tips and steep ridges in the resulting nano-hexagrams. The growth materials (Au0) are diverted to a few active sites, whereas the rest of the Au surfaces are inhibited. Modulation of the growth rate by the ratio of ascorbic acid to Au precursor gives a continuous change of the growth modes, explaining the main trends of shape evolution and the inequivalent growth of the equivalent surfaces. With only CTAB as the ligand, the fact that ridges and spikes could be formed in defiance of facet control suggests that the role of CTAB cannot be ignored in the chiral synthesis and that the precise modulation of the Active Surface Growth could be the key to rational synthetic controls.
Collapse
Affiliation(s)
- An Su
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qian Wang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Liping Huang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yonglong Zheng
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Ma A, Yang W, Yan H, Tang J. Substrate-Free Fabrication of Single-Crystal Two-Dimensional Gold Nanoplates for Catalytic Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15263-15271. [PMID: 36444415 DOI: 10.1021/acs.langmuir.2c02404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) gold nanoplates (AuNPLs) have shown potential in catalysis, photonics, electronics, sensing, and biomedicine fields due to their high aspect ratio, fascinating surface chemistry, and quantum-size effect. Therefore, the synthesis of substrate-free, size-controlled single-crystal gold (Au) nanoplates is highly desirable for the development of catalysis and optical near-field enhancement applications. EDTA and hydroxide anions were used in this study to stimulate the formation of microscale single-crystal gold nanoplates under hydrothermal conditions. The reaction temperature, amount of EDTA, and hydroxyl anions all have a significant effect on the morphologies and size distributions of the gold nanoplates. The gold nanoplates had an average side length of between 3 and 11 μm. The application of the microscale single-crystal gold nanoplates as a nanocatalyst proved their excellent catalytic activity and recyclability for the catalysis of 4-nitrophenol to 4-aminophenol, implying that the large-size gold nanoplates were promising in heterogeneous catalysis applications.
Collapse
Affiliation(s)
- Ang Ma
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Weiye Yang
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Hao Yan
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| | - Junqi Tang
- College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Neal RD, Lawson ZR, Tuff WJ, Xu K, Kumar V, Korsa MT, Zhukovskyi M, Rosenberger MR, Adam J, Hachtel JA, Camden JP, Hughes RA, Neretina S. Large-Area Periodic Arrays of Atomically Flat Single-Crystal Gold Nanotriangles Formed Directly on Substrate Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205780. [PMID: 36344422 DOI: 10.1002/smll.202205780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.
Collapse
Affiliation(s)
- Robert D Neal
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zachary R Lawson
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kaikui Xu
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Vishal Kumar
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matiyas T Korsa
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Maksym Zhukovskyi
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Jost Adam
- Computational Materials Group, SDU Centre for Photonics Engineering, Mads Clausen Institute, University of Southern Denmark, Odense, 5230, Denmark
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
9
|
Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2688. [PMID: 35957119 PMCID: PMC9370582 DOI: 10.3390/nano12152688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The increase in demand for pharmaceutical treatments due to pandemic-related illnesses has created a need for improved quality control in drug manufacturing. Understanding the physical, biological, and chemical properties of APIs is an important area of health-related research. As such, research into enhanced chemical sensing and analysis of pharmaceutical ingredients (APIs) for drug development, delivery and monitoring has become immensely popular in the nanotechnology space. Nanomaterial-based chemical sensors have been used to detect and analyze APIs related to the treatment of various illnesses pre and post administration. Furthermore, electrical and optical techniques are often coupled with nano-chemical sensors to produce data for various applications which relate to the efficiencies of the APIs. In this review, we focus on the latest nanotechnology applied to probing the chemical and biochemical properties of pharmaceutical drugs, placing specific interest on several types of nanomaterial-based chemical sensors, their characteristics, detection methods, and applications. This study offers insight into the progress in drug development and monitoring research for designing improved quality control methods for pharmaceutical and health-related research.
Collapse
Affiliation(s)
- Lebogang Thobakgale
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| | - Saturnin Ombinda-Lemboumba
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
10
|
Yang S, Zheng Y, He G, Zhang M, Li H, Wang Y, Chen H. From flat to deep concave: an unusual mode of facet control. Chem Commun (Camb) 2022; 58:6128-6131. [PMID: 35506632 DOI: 10.1039/d2cc01221a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Au particles with rhombic dodecahedron outlines and deep cavities are obtained by epitaxial growth from a triangular nanoplate. An unusual "wrapping" growth that combines ligand-promoted facet-selective growth and site-specific deposition is proposed. Such a templateless growth not only allows the extreme defect-tolerance, but also broadens the synthetic control at the nanoscale.
Collapse
Affiliation(s)
- Shenghao Yang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Yonglong Zheng
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Guangyu He
- Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
| | - Mengmeng Zhang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Hongyan Li
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Hongyu Chen
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
11
|
Mba JC, Mitomo H, Yonamine Y, Wang G, Matsuo Y, Ijiro K. Hysteresis in the Thermo-Responsive Assembly of Hexa(ethylene glycol) Derivative-Modified Gold Nanodiscs as an Effect of Shape. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1421. [PMID: 35564130 PMCID: PMC9102705 DOI: 10.3390/nano12091421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
Abstract
Anisotropic gold nanodiscs (AuNDs) possess unique properties, such as large flat surfaces and dipolar plasmon modes, which are ideal constituents for the fabrication of plasmonic assemblies for novel and emergent functions. In this report, we present the thermo-responsive assembly and thermo-dynamic behavior of AuNDs functionalized with methyl-hexa(ethylene glycol) undecane-thiol as a thermo-responsive ligand. Upon heating, the temperature stimulus caused a blue shift of the plasmon peak to form a face-to-face assembly of AuNDs due to the strong hydrophobic and van der Waals interactions between their large flat surfaces. Importantly, AuNDs allowed for the incorporation of the carboxylic acid-terminated ligand while maintaining their thermo-responsive assembly ability. With regard to their reversible assembly/disassembly behavior in the thermal cycling process, significant rate-independent hysteresis, which is related to their thermo-dynamics, was observed and was shown to be dependent on the carboxylic acid content of the surface ligands. As AuNDs have not only unique plasmonic properties but also high potential for attachment due to the fact of their flat surfaces, this study paves the way for the exploitation of AuNDs in the development of novel functional materials with a wide range of applications.
Collapse
Affiliation(s)
- Joshua Chidiebere Mba
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo 060-0810, Hokkaido, Japan;
| | - Hideyuki Mitomo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Hokkaido, Japan; (Y.Y.); (Y.M.)
| | - Yusuke Yonamine
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Hokkaido, Japan; (Y.Y.); (Y.M.)
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China;
| | - Yasutaka Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Hokkaido, Japan; (Y.Y.); (Y.M.)
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021, Hokkaido, Japan; (Y.Y.); (Y.M.)
| |
Collapse
|
12
|
Kinetics‐Controlled Synthesis of {100}‐Facet‐Enclosed Gold Quasi‐Square Nanosheets with Curved Edges. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Yang S, Li H, Liu R, Wang C, Yu J, Li S, Wang Y, Chen H. Understanding the evolution of tunable spiral threads in homochiral Au nano-screws. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00396a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Penta-twin Au nanorods are transformed into homochiral nano-screws. A feed-back mechanism is proposed to explain the dynamic evolution of the spirals.
Collapse
Affiliation(s)
- Shenghao Yang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Hongyan Li
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Ruirui Liu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Cheng Wang
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Jialong Yu
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Shumin Li
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Hongyu Chen
- Institute of Advanced Synthesis (IAS), and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
14
|
Klebowski B, Stec M, Depciuch J, Gałuszka A, Pajor-Swierzy A, Baran J, Parlinska-Wojtan M. Gold-Decorated Platinum and Palladium Nanoparticles as Modern Nanocomplexes to Improve the Effectiveness of Simulated Anticancer Proton Therapy. Pharmaceutics 2021; 13:pharmaceutics13101726. [PMID: 34684019 PMCID: PMC8539939 DOI: 10.3390/pharmaceutics13101726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal nanoparticles, such as gold (Au NPs), platinum (Pt NPs), or palladium (Pd NPs), due to their highly developed surface, stability, and radiosensitizing properties, can be applied to support proton therapy (PT) of cancer. In this paper, we investigated the potential of bimetallic, c.a. 30 nm PtAu and PdAu nanocomplexes, synthesized by the green chemistry method and not used previously as radiosensitizers, to enhance the effect of colorectal cancer PT in vitro. The obtained nanomaterials were characterized by scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), UV-Vis spectroscopy, and zeta potential measurements. The effect of PtAu and PdAu NPs in PT was investigated on colon cancer cell lines (SW480, SW620, and HCT116), as well as normal colon epithelium cell line (FHC). These cells were cultured with both types of NPs and then irradiated by proton beam with a total dose of 15 Gy. The results of the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test showed that the NPs-assisted PT resulted in a better anticancer effect than PT used alone; however, there was no significant difference in the radiosensitizing properties between tested nanocomplexes. The MTS results were further verified by defining the cell death as apoptosis (Annexin V binding assay). Furthermore, the data showed that such a treatment was more selective for cancer cells, as normal cell viability was only slightly affected.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
- Correspondence:
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
| | - Adrianna Gałuszka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Anna Pajor-Swierzy
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 20-239 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | | |
Collapse
|
15
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
16
|
Zare EN, Iftekhar S, Park Y, Joseph J, Srivastava V, Khan MA, Makvandi P, Sillanpaa M, Varma RS. An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants. CHEMOSPHERE 2021; 280:130907. [PMID: 34162104 DOI: 10.1016/j.chemosphere.2021.130907] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Because of their carcinogenicity and mutagenicity, the elimination of organic contaminants from surface and subsurface water is a subject of environmental significance. Conventional water decontamination approaches such as membrane separation, ultrafiltration, adsorption, reverse osmosis, coagulation, etc., have relatively higher operating costs and can generate highly toxic secondary contaminants. On the other hand, heterogeneous photocatalysis, an advanced oxidation process (AOP), is considered a clean and cost-effective process for organic pollutants degradation. Owing to their distinctive structure and physicochemical properties non-spherical semiconductors have gained considerable limelight in the photocatalytic degradation of organic contaminants. The current review briefly introduces a wide range of organic water contaminants. Recent advances in non-spherical semiconductor assembly and their photocatalytic degradation applications are highlighted. The underlying mechanism, fundamentals of photocatalytic reactions, and the factors affecting the degradation performance are also alluded including the current challenges and future research perspectives.
Collapse
Affiliation(s)
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70210, Finland
| | - Yuri Park
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Jessy Joseph
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Varsha Srivastava
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI, 50130, Mikkeli, Finland
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- Center for Materials Interfaces, Istituto Italiano di Tecnologia (IIT), Viale R. Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mika Sillanpaa
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Mi X, Zhang T, Zhang B, Ji M, Kang B, Kang C, Fu Z, Zhang Z, Zheng H. Binary Surfactant-Mediated Tunable Nanotip Growth on Gold Nanoparticles and Applications in Photothermal Catalysis. Front Chem 2021; 9:699548. [PMID: 34307300 PMCID: PMC8294035 DOI: 10.3389/fchem.2021.699548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmonic nanostructures with sharp tips are widely used for optical signal enhancement because of their strong light-confining abilities. These structures have a wide range of potential applications, for example, in sensing, bioimaging, and surface-enhanced Raman scattering. Au nanoparticles, which are important plasmonic materials with high photothermal conversion efficiencies in the visible to near-infrared region, have contributed greatly to the development of photothermal catalysis. However, the existing methods for synthesizing nanostructures with tips need the assistance of poly(vinylpyrrolidone), thiols, or biomolecules. This greatly hinders signal detection because of stubborn residues. Here, we propose an efficient binary surfactant-mediated method for controlling nanotip growth on Au nanoparticle surfaces. This avoids the effects of surfactants and can be used with other Au nanostructures. The Au architecture tip growth process can be controlled well by adjusting the ratio of hexadecyltrimethylammonium bromide to hexadecyltrimethylammonium chloride. This is due to the different levels of attraction between Br-/Cl- and Au3+ ions. The surface-enhanced Raman scattering and catalytic abilities of the synthesized nanoparticles with tips were evaluated by electromagnetic simulation and photothermal catalysis experiments (with 4-nitrothiophenol). The results show good potential for use in surface-enhanced Raman scattering applications. This method provides a new strategy for designing plasmonic photothermal nanostructures for chemical and biological applications.
Collapse
Affiliation(s)
- Xiaohu Mi
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Tingting Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Baobao Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Min Ji
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Bowen Kang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Chao Kang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhengkun Fu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Hairong Zheng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
18
|
Kumar A, Kumar S, Kiran K, Banerjee S, Pande V, Dandapat A. Myco-nanotechnological approach to synthesize silver oxide nanocuboids using endophytic fungus isolated from Citrus pseudolimon plant. Colloids Surf B Biointerfaces 2021; 206:111948. [PMID: 34224931 DOI: 10.1016/j.colsurfb.2021.111948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/23/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
The current study reports the isolation of Colletotrichum plurivorum, an endophytic fungus from a Citrus pseudolimon plant and its utilization in the green synthesis of silver oxide nanocuboids (Ag2O NCs) at room temperature. The synthesized nanocrystals were thoroughly characterized by UV-vis, FTIR spectroscopy, field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) analyses. Electron microscopic images confirmed the formation of cuboid shaped particles having size 200-250 nm in length and 80-150 nm in width, whereas, XRD and selected area electron diffraction (SAED) pattern confirms the formation of cubic Ag2O nanocrystals. Then these Ag2O NCs are applied in antibacterial activities against a pathogenic gram-negative bacteria Escherichia coli and gram-positive bacteria Bacillus subtilis and found very good activities against them. Currently these types of nanocuboids have drawn great interest in the field of catalysis, photocatalysis to biomedical applications.
Collapse
Affiliation(s)
- Aman Kumar
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Suresh Kumar
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Kumari Kiran
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Sabyasachi Banerjee
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India
| | - Anirban Dandapat
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Bhimtal, Uttarakhand, 263136, India; Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, 263002, India.
| |
Collapse
|
19
|
Si P, Razmi N, Nur O, Solanki S, Pandey CM, Gupta RK, Malhotra BD, Willander M, de la Zerda A. Gold nanomaterials for optical biosensing and bioimaging. NANOSCALE ADVANCES 2021; 3:2679-2698. [PMID: 36134176 PMCID: PMC9418567 DOI: 10.1039/d0na00961j] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 05/03/2023]
Abstract
Gold nanoparticles (AuNPs) are highly compelling nanomaterials for biomedical studies due to their unique optical properties. By leveraging the versatile optical properties of different gold nanostructures, the performance of biosensing and biomedical imaging can be dramatically improved in terms of their sensitivity, specificity, speed, contrast, resolution and penetration depth. Here we review recent advances of optical biosensing and bioimaging techniques based on three major optical properties of AuNPs: surface plasmon resonance, surface enhanced Raman scattering and luminescence. We summarize the fabrication methods and optical properties of different types of AuNPs, highlight the emerging applications of these AuNPs for novel optical biosensors and biomedical imaging innovations, and discuss the future trends of AuNP-based optical biosensors and bioimaging as well as the challenges of implementing these techniques in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Peng Si
- Department of Structural Biology, Stanford University California 94305 USA
| | - Nasrin Razmi
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Omer Nur
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Chandra Mouli Pandey
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University Shahbad Daulatpur Delhi 110042 India
| | - Magnus Willander
- Department of Science and Technology, Physics and Electronics, Linköping University SE-60174 Norrköping Sweden
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University California 94305 USA
| |
Collapse
|
20
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
21
|
Tan T, Zhang S, Wang J, Zheng Y, Lai H, Liu J, Qin F, Wang C. Resolving the stacking fault structure of silver nanoplates. NANOSCALE 2021; 13:195-205. [PMID: 33325976 DOI: 10.1039/d0nr06912d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The stacking fault structure (SFT) is the key to understanding the symmetry breaking of fcc nanocrystals and the origin of two-dimensional (2D) anisotropic growth of nanoplates. After resolving the SFT in Ag nanoplates under aberration-corrected transmission electron microscope (TEM) observations, it is found that there are three basic stacking faults, namely, twinned stacking fault (SF-t), a layer missed stacking fault (SF-m) and a layer inserted stacking fault (SF-i). The SFT is composed of one or a combination of two or all of the three kinds of stacking faults with a total number varying from 4 to 9. It has been demonstrated that the SFT could generate concave faces, step faces and (100) faces in the lateral directions, which provides sites for adding-atoms with a higher coordination number than on the top and bottom flat (111) faces, and results in the anisotropic growth along the 2D direction. Additionally, Ag nanoplates fall into either center symmetry or mirror symmetry when the corresponding number is even or odd. The center symmetry and mirror symmetry with different side face arrangements in turn manipulate the shape evolution to cubes and bipyramids, respectively. Our study provides a comprehensive understanding of the formation and growth of 2D metal nanomaterials.
Collapse
Affiliation(s)
- Taixing Tan
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu C, He H, Song Y, Bi C, Xing L, Du W, Li S, Xia H. Synthesis of large gold nanoparticles with deformation twinnings by one-step seeded growth with Cu(ii)-mediated Ostwald ripening for determining nitrile and isonitrile groups. NANOSCALE 2020; 12:16934-16943. [PMID: 32776026 DOI: 10.1039/d0nr04733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, uniform and large gold nanoparticles (Au NPs) including quasi-spherical (QS) Au NPs with average diameters of 70 to 196 nm and trisoctahedral (TOH) Au NPs with average diameters of 140 to 195 nm were successfully synthesized by controlling the concentration of Cu2+ ions and the particle number of 3 nm Au-NP seeds, respectively, using a one-step seeded growth method with Cu2+-mediated Ostwald ripening. It is found that because of the concentration-dependent under-potential deposition of Cu2+ ions (CuUPD), 3 nm Au-NP seeds are firstly changed into Au NPs with a controlled QS- or TOH shape at the initial growth stage, followed by the conformal growth of Au atoms onto the initially formed Au NPs due to Cu2+-mediated Ostwald ripening, in which the extra Au atoms come from the dissolution of in situ Au nuclei by the unavoidable self-nucleation. Moreover, the as-prepared QS Au NPs with a rough surface exhibit a better SERS performance for physically adsorbed probes (crystal violet, CV) than the TOH Au NPs with sharp tips and with a comparable size. Furthermore, the as-prepared QS Au NPs can be used to distinguish nitrile and isonitrile groups by surface-enhanced Raman scattering (SERS) due to the presence of deformation twinnings. Thus, the as-prepared QS Au NPs with a rough surface and deformation twinnings can be further used as templates for the fabrication of bimetallic materials with multi-functionalities.
Collapse
Affiliation(s)
- Chenshuo Wu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Hongpeng He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Yahui Song
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Cuixia Bi
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Wei Du
- School of Environment and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
23
|
Wang R, He Z, Sokolov AV, Kurouski D. Gap-Mode Tip-Enhanced Raman Scattering on Au Nanoplates of Varied Thickness. J Phys Chem Lett 2020; 11:3815-3820. [PMID: 32340446 DOI: 10.1021/acs.jpclett.0c01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gold nanoplates (AuNPLs) enable the gap-mode configuration of tip-enhanced Raman spectroscopy (TERS). This allows for low-concentration molecular sensing and high-resolution imaging. Compared with non-gap-mode TERS, the gap plasmon provides significantly higher enhancement factors. In addition, AuNPLs exhibit a lightning rod or edge effect, further enhancing the laser field and increasing the spectroscopic sensitivity. In this study, we investigate the relationship between the thickness of AuNPLs and the intensity of the spontaneous Raman signal produced by 4-nitrobenzenethiol, a reporter molecule used in TERS. Our experimental and theoretical results show that the intensity of TERS spectra increases with an increase in the thickness of the AuNPLs. This study of the thickness dependence of AuNPL allows us to find a configuration with maximal nanoplasmonic effects. Moreover, the electromagnetic interaction of the AuNPL with the tip, positioned near the AuNPL's edge, results in a plasmonic nanoantenna configuration for field enhancement, with important promise for future applications to nanobioimaging and biosensing.
Collapse
|
24
|
Huang W, Chen R, Peng Y, Duan F, Huang Y, Guo W, Chen X, Nie L. In Vivo Quantitative Photoacoustic Diagnosis of Gastric and Intestinal Dysfunctions with a Broad pH-Responsive Sensor. ACS NANO 2019; 13:9561-9570. [PMID: 31361949 DOI: 10.1021/acsnano.9b04541] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Gastrointestinal diseases affect many people in the world and significantly impair life quality and burden the healthcare system. The functional parameters of the gastrointestinal tract such as motility and pH can effectively reflect the changes of gastrointestinal activity in physiological and pathological conditions. Thus, a noninvasive method for real-time and quantitative measurement of gastrointestinal functional parameters in vivo is highly desired. At present, there are many strategies widely used for the diagnosis of gastrointestinal diseases in clinic, including X-ray barium meal examination, ultrasound imaging, radionuclide examination, endoscopy, etc. However, these methods are limited in determining the gastrointestinal status and cannot provide comprehensive quantitative information. Photoacoustic imaging (PAI) is a rapid noninvasive real-time imaging technique in which multiple types of functional and quantitative information can be simultaneously obtained. Unfortunately, very few ratiometric PAI contrast agents have been reported for quantification of gastrointestinal functional parameters in vivo. In this work, a broad, pH-responsive ratiometric sensor based on polyaniline and Au triangular nanoplates was developed. Utilizing the sensor as a contrast agent, PAI served as an all-in-one technique, accurately measuring the gastrointestinal functional parameters in a single test. Notably, this sensor was examined to be ultrasensitive with pH responses as fast as 0.6 s and durability as long as 24 h, and was repeatable and reversible for longitudinal monitoring. The quantitative results demonstrated a significant disorder in motility and decrease in pH for gastric and duodenal ulcers. Collectively, the combination of PAI and this broad pH-responsive sensor might be a promising candidate for quantitative diagnosis of gastrointestinal diseases.
Collapse
Affiliation(s)
- Wenchao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Yanfang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , P.R. China
| |
Collapse
|
25
|
Fabrication of innocuous gold nanoparticles using plant cells in culture. Sci Rep 2019; 9:12040. [PMID: 31427692 PMCID: PMC6700120 DOI: 10.1038/s41598-019-48475-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/02/2019] [Indexed: 11/09/2022] Open
Abstract
Plant extracts and their different growth phases have been manipulated for the fabrication of nanomaterials, which can be an eco-friendly alternative to the chemical methods that produce hazardous by-products. However, practical difficulties in isolation of the nanoparticles obtained through biological methods and the scanty control that these methods allow over their shapes and sizes impose limitations in their utility. For the first time, we report here a versatile system using cell suspension culture of Medicago sativa, which ensures control over the reaction to regulate size of the particles as well as their easier recovery afterwards. Isolated nanoparticles were characterized for their shape, size and functions. The particles varied in shapes from isodiametric spheres to exotic tetrahedrons, pentagons and pentagonal prisms. They clearly demonstrated catalytic activity in the reduction reaction of methylene blue by stannous chloride. Interestingly, the cell culture-derived particles were found less cytotoxic to healthy human cell line HEp-2 while more cytotoxic to the cancer cell line 4T-1 in comparison to those synthesized through citrate method. However, when administered in mice, these nanoparticles elicited similar inflammatory responses as those produced by chemically synthesized counterparts. These results envisage the utility of these particles for various biological applications.
Collapse
|
26
|
Szustakiewicz P, González‐Rubio G, Scarabelli L, Lewandowski W. Robust Synthesis of Gold Nanotriangles and their Self-Assembly into Vertical Arrays. ChemistryOpen 2019; 8:705-711. [PMID: 31205847 PMCID: PMC6559201 DOI: 10.1002/open.201900082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
We report an efficient, seed-mediated method for the synthesis of gold nanotriangles (NTs) which can be used for controlled self-assembly. The main advantage of the proposed synthetic protocol is that it relies on using stable (over the course of several days) intermediate seeds. This stability translates into increasing time efficiency of the synthesis and makes the protocol experimentally less demanding ('fast addition' not required, tap water can be used in the final steps) as compared to previously reported procedures, without compromising the size and shape monodispersity of the product. We demonstrate high reproducibility of the protocol in the hands of different researchers and in different laboratories. Additionally, this modified seed-mediated method can be used to produce NTs with edge lengths between ca. 45 and 150 nm. Finally, the high 'quality' of NTs allows the preparation of long-range ordered assemblies with vertically oriented building blocks, which makes them promising candidates for future optoelectronic technologies.
Collapse
Affiliation(s)
- Piotr Szustakiewicz
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| | | | - Leonardo Scarabelli
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
- California NanoSystems InstituteUniversity of California, Los AngelesLos Angeles90095 CaliforniaUSA
| | - Wiktor Lewandowski
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| |
Collapse
|
27
|
Osonga F, Kariuki VM, Wambua VM, Kalra S, Nweke B, Miller RM, Çeşme M, Sadik OA. Photochemical Synthesis and Catalytic Applications of Gold Nanoplates Fabricated Using Quercetin Diphosphate Macromolecules. ACS OMEGA 2019; 4:6511-6520. [PMID: 31179406 PMCID: PMC6547623 DOI: 10.1021/acsomega.8b02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The demand for safer design and synthesis of gold nanoparticles (AuNPs) is on the increase with the ultimate goal of producing clean nanomaterials for biological applications. We hereby present a rapid, greener, and photochemical synthesis of gold nanoplates with sizes ranging from 10 to 200 nm using water-soluble quercetin diphosphate (QDP) macromolecules. The synthesis was achieved in water without the use of surfactants, reducing agents, or polymers. The edge length of the triangular nanoplates ranged from 50 to 1200 nm. Furthermore, the reduction of methylene blue was used to investigate the catalytic activity of AuNPs. The catalytic activity of triangular AuNPs was three times higher than that of the spherical AuNPs based on kinetic rate constants (k). The rate constants were 3.44 × 10-2 and 1.11 × 10-2 s-1 for triangular and spherical AuNPs, respectively. The X-ray diffraction data of gold nanoplates synthesized by this method exhibited that the nanocrystals were mainly dominated by (111) facets which are in agreement to the nanoplates synthesized by using thermal and chemical approaches. The calculated relative diffraction peak intensity of (200), (220), and (311) in comparison with (111) was found to be 0.35, 0.17, and 0.15, respectively, which were lower than the corresponding standard values (JCPDS 04-0784). For example, (200)/(111) = 0.35 compared to 0.52 obtained from the standard (JCPDS 04-0784), indicating that the gold nanoplates are dominated by (111) facets. The calculated lattice from selected area electron diffraction data of the as-synthesized and after 1 year nanoplates was 4.060 and 4.088 Å, respectively. Our calculations were found to be in agreement with 4.078 Å for face-centered cubic gold (JCPDS 04-0784) and literature values of 4.07 Å. The computed QDP-Au complex demonstrated that the reduction process took place in the B ring of QDP. This approach contributes immensely to promoting the ideals of sustainable nanotechnology by eradicating the use of hazardous and toxic organic solvents.
Collapse
|
28
|
Si P, Yuan E, Liba O, Winetraub Y, Yousefi S, SoRelle ED, Yecies DW, Dutta R, de la Zerda A. Gold Nanoprisms as Optical Coherence Tomography Contrast Agents in the Second Near-Infrared Window for Enhanced Angiography in Live Animals. ACS NANO 2018; 12:11986-11994. [PMID: 30422624 DOI: 10.1021/acsnano.8b03862] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography angiography (OCTA) is an important tool for investigating vascular networks and microcirculation in living tissue. Traditional OCTA detects blood vessels via intravascular dynamic scattering signals derived from the movements of red blood cells (RBCs). However, the low hematocrit and long latency between RBCs in capillaries make these OCTA signals discontinuous, leading to incomplete mapping of the vascular networks. OCTA imaging of microvascular circulation is particularly challenging in tumors due to the abnormally slow blood flow in angiogenic tumor vessels and strong attenuation of light by tumor tissue. Here, we demonstrate in vivo that gold nanoprisms (GNPRs) can be used as OCT contrast agents working in the second near-infrared window, significantly enhancing the dynamic scattering signals in microvessels and improving the sensitivity of OCTA in skin tissue and melanoma tumors in live mice. With GNPRs as contrast agents, the postinjection OCT angiograms showed 41 and 59% more microvasculature than preinjection angiograms in healthy mouse skin and melanoma tumors, respectively. By enabling better characterization of microvascular circulation in vivo, GNPR-enhanced OCTA could lead to better understanding of vascular functions during pathological conditions, more accurate measurements of therapeutic response, and improved patient prognoses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Adam de la Zerda
- The Chan Zuckerberg Biohub , San Francisco , California 94158 , United States
| |
Collapse
|
29
|
Oh JH, Lee JS. One-Pot Photochemical Synthesis of Gold Nanoplates Using Nonionic Diblock Copolymers and their Surface Functionalization. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ju-Hwan Oh
- Department of Materials Science and Engineering; Korea University; Seoul 02841 Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering; Korea University; Seoul 02841 Republic of Korea
| |
Collapse
|
30
|
Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem Rev 2018; 118:6409-6455. [PMID: 29927583 DOI: 10.1021/acs.chemrev.7b00727] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As one unique group of two-dimensional (2D) nanomaterials, 2D metal nanomaterials have drawn increasing attention owing to their intriguing physiochemical properties and broad range of promising applications. In this Review, we briefly introduce the general synthetic strategies applied to 2D metal nanomaterials, followed by describing in detail the various synthetic methods classified in two categories, i.e. bottom-up methods and top-down methods. After introducing the unique physical and chemical properties of 2D metal nanomaterials, the potential applications of 2D metal nanomaterials in catalysis, surface enhanced Raman scattering, sensing, bioimaging, solar cells, and photothermal therapy are discussed in detail. Finally, the challenges and opportunities in this promising research area are proposed.
Collapse
Affiliation(s)
- Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Wenxin Niu
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Cuiling Li
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Nailiang Yang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| |
Collapse
|
31
|
Synthesis of Triangular Silver and Gold Nanoprisms Using Consensus Sequence Tetratricopeptide Repeat Proteins. Methods Mol Biol 2018. [PMID: 29868957 DOI: 10.1007/978-1-4939-7893-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Anisotropic metallic nanoparticles, such as Au and Ag nanoprisms (NPSMs), have received tremendous attention for their application in catalysis, molecular sensing, signal amplification, bioimaging, and therapeutic applications due to their shape-dependent optical and physical properties. Herein, we present a protein-enabled synthetic strategy for the seeded growth of silver and gold NPSMs with low shape polydispersity, narrow size distribution, and tailored plasmonic absorbance. During the initial seed nucleation step, consensus sequence tetratricopeptide repeat (CTPR) proteins are utilized as potent stabilizers to facilitate the formation of planar-twinned Ag seeds. High yield production of well-defined Ag/Au NPSMs is achieved, respectively, by adding CTPR-stabilized Ag seeds into the growth solutions containing metal precursor, mild reducing agent, sodium halide, and additional CTPR.
Collapse
|
32
|
Peng Y, Liu Y, Lu X, Wang S, Chen M, Huang W, Wu Z, Lu G, Nie L. Ag-Hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy. J Mater Chem B 2018; 6:2813-2820. [PMID: 32254234 DOI: 10.1039/c8tb00617b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Core-shell metal nanostructures with versatile functions have attracted extensive attention and are highly desirable for imaging and therapeutic purposes. Among them, gold and silver nanomaterials are widely explored for biological applications due to their unique properties. Despite a wide range of applications, limited enhancement ability and insufficient photothermal performance have hampered their further development. In this work, a novel multifunctional nanoprobe, a Au@Ag nanoplate (NP), is fabricated with a biocompatible surface in the aqueous phase. The as-obtained nanocomposite possesses a unique core-shell triangular configuration, sharp apexes, and a large specific surface area, exhibiting strong absorption at 780 nm. PEG-Au@Ag NPs depict highly sensitive photoacoustic imaging (PAI) capacity and extraordinary photothermal conversion efficiency (η = 73%) under 808 nm laser irradiation. Raman signals are multiplied benefitting from the enhanced surface plasma resonance contributed by the silver layer and sharp spears. PAI provides deeper pathological information while Raman detection presents superficial optical properties. Their union forms comprehensive scale coverage for disease imaging and localization. Outstanding photothermal therapy and antibacterial efficacy are observed on animal disease models. This novel multifunctional nanocomposite not only holds great potential as an excellent contrast agent for the combination of PAI and Raman evaluation, but also allows tumor and infection therapy as well as the corresponding therapeutic monitoring.
Collapse
Affiliation(s)
- Ya Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jang Y, Lee N, Kim JH, Park YI, Piao Y. Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications. NANOMATERIALS 2018; 8:nano8040252. [PMID: 29670020 PMCID: PMC5923582 DOI: 10.3390/nano8040252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 02/04/2023]
Abstract
Tuning the optical properties of Au nanostructures is of paramount importance for scientific interest and has a wide variety of applications. Since the surface plasmon resonance properties of Au nanostructures can be readily adjusted by changing their shape, many approaches for preparing Au nanostructures with various shapes have been reported to date. However, complicated steps or the addition of several reagents would be required to achieve shape control of Au nanostructures. The present work describes a facile and effective shape-controlled synthesis of Au nanostructures and their photothermal therapy applications. The preparation procedure involved the reaction of HAuCl4 and ethylenediaminetetraacetic acid (EDTA) tetrasodium salt, which acted as a reducing agent and ligand, at room temperature without the need for any toxic reagent or additives. The morphology control from spheres to branched forms and nanowire networks was easily achieved by varying the EDTA concentration. Detailed investigations revealed that the four carboxylic groups of the EDTA tetrasodium salt are essential for effective growth and stabilization. The produced Au nanowire networks exhibited a broad absorption band in the near-infrared (NIR) region, thereby showing efficient cancer therapeutic performance by inducing the selective photothermal destruction of cancerous glioblastoma cells (U87MG) under NIR irradiation.
Collapse
Affiliation(s)
- Youngjin Jang
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Korea.
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science, and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Yuanzhe Piao
- Graduate School of Convergence Science and Technology & Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea.
| |
Collapse
|
34
|
Xin W, Severino J, De Rosa IM, Yu D, Mckay J, Ye P, Yin X, Yang JM, Carlson L, Kodambaka S. One-Step Synthesis of Tunable-Size Gold Nanoplates on Graphene Multilayers. NANO LETTERS 2018; 18:1875-1881. [PMID: 29406754 DOI: 10.1021/acs.nanolett.7b05173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Au nanoplates (quasi-two-dimensional single crystals) are most commonly synthesized using a mixture of Au precursors via approaches involving multiple processing steps and the use of seed crystals. Here, we report the synthesis of truncated-hexagonal {111}-oriented micrometer-scale Au nanoplates on graphene multilayers using only potassium tetrabromoaurate (KAuBr4) as the precursor. We demonstrate that the nanoplate sizes can be controllably varied from tens of nanometers up to a few micrometers by introducing desired concentrations of chloroauric acid (HAuCl4) to KAuBr4 and their thicknesses from ∼13 to ∼46 nm with the synthesis time. Through a series of experiments carried out as a function of synthesis time and precursor composition [mixtures of HAuCl4 and KAuBr4, KBr, or ionic liquid 1-butyl-3-methylimidazolium bromide ([Bmim]Br)], we identify the optimal HAuCl4 and KAuBr4 concentrations and synthesis times that yield the largest and the thinnest size nanoplates. We show that the nanoplates are kinetically limited morphologies resulting from preferential growth of {111} facets facilitated by bromide ions in KAuBr4 solutions; we suggest that the presence of chloride ions enhances the rate of Au deposition and the relative concentration of chloride and bromide ions determines the shape anisotropy of resulting crystals. Our results provide new insights into the kinetics of nanoplate formation and show that a single precursor containing both Au and Br is sufficient to crystallize nanoplates on graphitic layers, which serve as reducing agent while enabling the nucleation and growth of Au nanoplates. We suggest that a similar approach may be used for the synthesis of nanoplates of other metals on weakly interacting van der Waals layers for, potentially, a variety of new applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xunqian Yin
- School of Materials Science and Engineering , Shandong University of Science and Technology , 579 Qianwangang Road, Economic & Technological Development Zones , Qingdao , Shandong 26650 , China
| | | | | | | |
Collapse
|
35
|
Lee KY. Fabrication of a Confined Gold Nanoflower in a Si Hole via Solid-to-Solid Mass Transfer. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kang Yeol Lee
- Research Institute of Natural Science; Gyeongsang National University; Jinju 52828 Korea
| |
Collapse
|
36
|
Dai L, Song L, Huang Y, Zhang L, Lu X, Zhang J, Chen T. Bimetallic Au/Ag Core-Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5378-5384. [PMID: 28502174 DOI: 10.1021/acs.langmuir.7b00097] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to the larger surface area and the synergistic effects between two noble metals, the bimetallic superstructures exhibit enhanced distinctive optical, catalytic, and photothermal performances and surface-enhanced Raman scattering (SERS) "hot-spot" effect, and thus have attracted great interest in various applications. Compared with the common Pd, Pt hierarchical structures coated onto Au nanoparticles (NPs), easily synthesized via fast autocatalytic surface growth arising from intrinsic properties of Pd and Pt metals, precisely controlling the hierarchical Ag growth onto Au NPs is rarely reported. In our present study, the reducing agent dopamine dithiocarbamate (DDTC) was covalently capped onto the first metal core (Au) to delicately control the growth model of the second metal (Ag). This results in heterogeneous nucleation and growth of Ag precursor on the surface of Au nanorods (NRs), and further formation of cornlike bimetallic Au/Ag core-shell superstructures, which usually cannot be achieved from traditional epitaxial growth. The thickness of the hierarchical Ag shell was finely tuned in a size range from 8 to 22 nm by simply varying the amount of the ratio between Ag ions and DDTC capped on Au NR core. The tunable Ag shell leads to anisotropic bimetallic Au/Ag core-shell superstructures, displaying two distinctive plasmonic resonances in the near-infrared region (NIR). In particular, the longitudinal surface plasmon resonance exhibits a broadly tunable range from 840 to 1277 nm. Additionally, the rich hot spots from obtained Au/Ag superstructures significantly enhance the SERS performance.
Collapse
Affiliation(s)
- Liwei Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Lei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Xuefei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| |
Collapse
|
37
|
Geng G, Chen P, Guan B, Liu Y, Yang C, Wang N, Liu M. Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors. RSC Adv 2017. [DOI: 10.1039/c7ra11188f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Au nanoplate/GO composites are facilely synthesized via a one-pot green protocol. The composites display a fascinating two-stage catalytic behavior, where the catalytic reactivity of the latter stage increases substantially by a factor of 9 times.
Collapse
Affiliation(s)
- Guangwei Geng
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- Beijing National Laboratory for Molecular Science
| | - Penglei Chen
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- Beijing National Laboratory for Molecular Science
| | - Bo Guan
- Beijing National Laboratory for Molecular Science
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yu Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- Beijing National Laboratory for Molecular Science
| | - Changchun Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Nannan Wang
- Beijing National Laboratory for Molecular Science
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
38
|
Yang Z, Li Z, Lu X, He F, Zhu X, Ma Y, He R, Gao F, Ni W, Yi Y. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract. NANO-MICRO LETTERS 2017; 9:5. [PMID: 30460302 PMCID: PMC6223771 DOI: 10.1007/s40820-016-0102-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/05/2016] [Indexed: 05/22/2023]
Abstract
ABSTRACT Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Zhaohui Li
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuxing Lu
- Division of i-Lab, Key Laboratory of Nano-Bio Interface and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Fengjiao He
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xingzhong Zhu
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yujie Ma
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Rong He
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Feng Gao
- Key Laboratory for Thin Film and Micro Fabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Weihai Ni
- Division of i-Lab, Key Laboratory of Nano-Bio Interface and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Yasha Yi
- Integrated Nano Optoelectronics Laboratory, Department of Electrical and Computer Engineering, University of Michigan, Dearborn, MI 48128 USA
- Energy Institute, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
39
|
You Y, Song Q, Wang L, Niu C, Na N, Ouyang J. Silica-coated triangular gold nanoprisms as distance-dependent plasmon-enhanced fluorescence-based probes for biochemical applications. NANOSCALE 2016; 8:18150-18160. [PMID: 27739545 DOI: 10.1039/c6nr06239c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plasmon-enhanced fluorescence (PEF)-based anisotropic nanostructures are considered extremely promising tools for improving the inherent problems of traditional fluorophores and for detecting important biomolecules with high sensitivity. Herein, a novel triangular gold nanoprism (AuNPR)-based fluorescence probe, AuNPR@SiO2@12,17-tetramethyl-3-dihydro-(2s-trans)-thyl-7(Ce6), was developed for PEF by virtue of multiple "hot spots" of AuNPRs. Fluorescence enhancement of fluorophores can be realized owing to the larger and stronger electromagnetic fields located at the sharp tips of AuNPRs than those on spherical particles and nanorods. A silica shell was employed as a rigid spacer to precisely adjust the distance between the AuNPR and Ce6 for optimal PEF. Owing to the improved fluorescence signal, core-shell PEF-based AuNPRs can be applied as a turn-on probe for highly selective and sensitive detection of pyrophosphate (PPi) with a desirable detection limit of 0.2 μM using a displacement approach. Meanwhile, we demonstrated that these nanomaterials have great potential for real-time monitoring of polymerase chain reaction (PCR) products, successfully revealing an approximately 240 times higher detectable fluorescence response than that of traditional gel electrophoresis. Furthermore, cell imaging indicates the potential applications of PEF-based probes in living cells.
Collapse
Affiliation(s)
- Ying You
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China and CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - Le Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Caixia Niu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
40
|
Huang Y, Dai L, Song L, Zhang L, Rong Y, Zhang J, Nie Z, Chen T. Engineering Gold Nanoparticles in Compass Shape with Broadly Tunable Plasmon Resonances and High-Performance SERS. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27949-27955. [PMID: 27700031 DOI: 10.1021/acsami.6b05258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present the uniform and high-yield synthesis of a novel gold nanostructure of compass shape composed of a Au sphere at the central and two gradually thinning conical tips at the opposed poles. The Au compass shapes were synthesized through a seed-mediated growth approach employing a binary mixture of cetyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) as the structure-directing agents. Under the condition of single surfactant (CTAB), the spherical seeds tend to grow into larger spherical Au nanoparticles (NPs); while the spherical seeds favor the formation of Au compass shaped NPs using two mixed surfactants (CTAB/NaOL). The reaction kinetics clearly shows a growth mechanism of Au compass shaped NPs. Interestingly, due to their anisotropic structure, Au compass shaped NPs show two distinctive plasmonic resonances, similar to those from Au nanorods. Particularly, the longitudinal surface plasmon resonances of Au compass shaped NPs exhibit a broadly tunable range from 600 to 865 nm. In addition, the obtained Au compass shaped NPs can be self-assembled into a two-dimensional monolayer with closely packed and highly aligned NPs, which results in periodic arrays of overlapped Au tips, generating hot spots for high-performance surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Youju Huang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Liwei Dai
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Liping Song
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Lei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Yun Rong
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Jiawei Zhang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742-4454, United States
| | - Tao Chen
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, P. R. China
| |
Collapse
|
41
|
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1576-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Chen S, Xu P, Li Y, Xue J, Han S, Ou W, Li L, Ni W. Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS. NANO-MICRO LETTERS 2016; 8:328-335. [PMID: 30460291 PMCID: PMC6223685 DOI: 10.1007/s40820-016-0092-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/08/2016] [Indexed: 05/29/2023]
Abstract
We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns. The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB). Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield, which are, respectively, optimized to be 85 °C and 6. The highest yield that can be achieved is 60 % at the optimized condition. The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions. Therefore, the reported synthesis approach is a time- and cost-effective one. The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually. Interestingly, only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules, where a maximum enhancement factor of 1.7 × 107 was obtained. The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Pengyu Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Yue Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Junfei Xue
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Song Han
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Weihui Ou
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Weihai Ni
- Division of i-Lab & Key Laboratory for Nano-Bio Interface Research, Suzhou Institute of Nano-Tech & Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 Jiangsu People’s Republic of China
| |
Collapse
|
43
|
Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Anal Chem 2016; 88:2149-55. [PMID: 26810698 DOI: 10.1021/acs.analchem.5b03735] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaming Chen
- Institute
of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory
of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Division
of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan
West Road, Zhenhai District, Ningbo 315201, China
| | - Youju Huang
- Division
of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan
West Road, Zhenhai District, Ningbo 315201, China
| | - Palanisamy Kannan
- Singapore
Centre on Environmental Life Science Engineering, Nanyang Technological University, Singapore 639798
| | - Lei Zhang
- Division
of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan
West Road, Zhenhai District, Ningbo 315201, China
| | - Zhenyu Lin
- Institute
of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory
of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiawei Zhang
- Division
of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan
West Road, Zhenhai District, Ningbo 315201, China
| | - Tao Chen
- Division
of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences, No. 1219 Zhongguan
West Road, Zhenhai District, Ningbo 315201, China
| | - Longhua Guo
- Institute
of Nanomedicine and Nanobiosensing, Ministry of Education Key Laboratory
of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
44
|
Chen L, Dandapat A, Huang Y, Song L, Zhang L, Zhang J, Sasson Y, Hou L, Chen T. Heterogemini surfactant assisted synthesis of monodisperse icosahedral gold nanocrystals and their applications in electrochemical biosensing. RSC Adv 2016. [DOI: 10.1039/c6ra03348b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Monodisperse icosahedral gold nanoparticles with tunable plasmonic property and high performance electrochemical sensing was synthesized by a heterogemini surfactant.
Collapse
Affiliation(s)
- Liming Chen
- Department of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Fuzhou University
- Fuzhou
- China
| | - Anirban Dandapat
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Youju Huang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Liping Song
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Lei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Jiawei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| | - Yoel Sasson
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Fuzhou University
- Fuzhou
- China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201
- China
| |
Collapse
|
45
|
Geng X, Roth KL, Freyman MC, Liu J, Grove TZ. Seed-mediated biomineralizaton toward the high yield production of gold nanoprisms. Chem Commun (Camb) 2016; 52:9829-32. [DOI: 10.1039/c6cc04708d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biocompatible triangular gold nanoprisms with well-defined morphology, tailored plasmonic absorbance, and high colloidal stability are synthesized via seed-mediated biomineralizaton.
Collapse
Affiliation(s)
- Xi Geng
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Kristina L. Roth
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Megan C. Freyman
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Jianzhao Liu
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Tijana Z. Grove
- Department of Chemistry
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
46
|
Lu X, Dandapat A, Huang Y, Zhang L, Rong Y, Dai L, Sasson Y, Zhang J, Chen T. Tris base assisted synthesis of monodispersed citrate-capped gold nanospheres with tunable size. RSC Adv 2016. [DOI: 10.1039/c6ra11189k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tris base assisted synthesis of highly uniform citrate-capped gold nanospheres was achieved by controlling the mode of moderately fast nucleation.
Collapse
Affiliation(s)
- Xuefei Lu
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
- Department of Polymer Materials
| | - Anirban Dandapat
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Youju Huang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Lei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Yun Rong
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Liwei Dai
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Yoel Sasson
- Casali Center of Applied Chemistry
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Jiawei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences
- Ningbo 315201
- China
| |
Collapse
|
47
|
Xu Y, Chen L, Wang X, Yao W, Zhang Q. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. NANOSCALE 2015; 7:10559-10583. [PMID: 26036784 DOI: 10.1039/c5nr02216a] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Review article provides a report on progress in the synthesis, properties and catalytic applications of noble metal based composite nanomaterials. We begin with a brief discussion on the categories of various composite materials. We then present some important colloidal synthetic approaches to the composite nanostructures; here, major attention has been paid to bimetallic nanoparticles. We also introduce some important physiochemical properties that are beneficial from composite nanomaterials. Finally, we highlight the catalytic applications of such composite nanoparticles and conclude with remarks on prospective future directions.
Collapse
Affiliation(s)
- Yong Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Gilroy KD, Sundar A, Hajfathalian M, Yaghoubzade A, Tan T, Sil D, Borguet E, Hughes RA, Neretina S. Transformation of truncated gold octahedrons into triangular nanoprisms through the heterogeneous nucleation of silver. NANOSCALE 2015; 7:6827-6835. [PMID: 25807181 DOI: 10.1039/c5nr00151j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Described is a straightforward procedure for forming organized substrate-immobilized nanoprisms which are single crystalline, surfactant-free and which form a heteroepitaxial relationship with the underlying substrate. The devised route utilizes truncated Au octahedrons formed through solid state dewetting techniques as high temperature heterogeneous nucleation sites for Ag adatoms which are arriving to the substrate surface in the vapour phase. Observed is a morphological and compositional transformation of the Au structures to triangular nanoprisms comprised of a homogeneous AuAg alloy. During this transformation, the localized surface plasmon resonance red-shifts, broadens and increases in strength. The shape transformation, which cannot be rationalized using thermodynamic arguments dependent on the surface energy minimization, is described in terms of a kinetically driven growth mode, previously predicted by molecular dynamic simulations. The so-formed structures, when coated with a thin layer of Pd, are demonstrated as plasmonic sensing elements for hydrogen detection.
Collapse
Affiliation(s)
- K D Gilroy
- College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Patel D, James KT, O’Toole M, Zhang G, Keynton RS, Gobin AM. A high yield, one-pot dialysis-based process for self-assembly of near infrared absorbing gold nanoparticles. J Colloid Interface Sci 2015; 441:10-6. [DOI: 10.1016/j.jcis.2014.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/01/2014] [Accepted: 11/10/2014] [Indexed: 11/25/2022]
|
50
|
Cui X, Huang Y, Wang J, Zhang L, Rong Y, Lai W, Chen T. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7. RSC Adv 2015. [DOI: 10.1039/c5ra06237c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The size and uniformity of AuNPs were optimized to maximally amplify both visual inspection signals and quantitative data of LFA.
Collapse
Affiliation(s)
- Xi Cui
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047, China
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
| | - Youju Huang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201, China
| | - Jingyun Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047, China
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
| | - Lei Zhang
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201, China
| | - Yun Rong
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047, China
| | - Tao Chen
- Division of Polymer and Composite Materials
- Ningbo Institute of Material Technology and Engineering
- Chinese Academy of Science
- Ningbo 315201, China
| |
Collapse
|