1
|
Niu G, Jiang J, Zeng X, Liu X, Wang X, Zhang Y, Che L, Sui L, Wu G, Yuan K, Yang X. Broad-Temperature Optical Thermometry via Dual Sensitivity of Self-Trapped Excitons Lifetime and Higher-Order Phonon Anharmonicity in Lead-Free Perovskites. Angew Chem Int Ed Engl 2025; 64:e202422424. [PMID: 39844778 DOI: 10.1002/anie.202422424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Broad-temperature optical thermometry necessitates materials with exceptional sensitivity and stability across varied thermal conditions, presenting challenges for conventional systems. Here, we report a lead-free, vacancy-ordered perovskite Cs2TeCl6, that achieves precise temperature sensing through a novel combination of self-trapped excitons (STEs) photoluminescence (PL) lifetime modulation and unprecedented fifth-order phonon anharmonicity. The STEs PL lifetime demonstrates a highly temperature-sensitive response from 200 to 300 K, ideal for low-to-intermediate thermal sensing. In contrast, the Eg phonon mode undergoes significant linewidth broadening due to five-phonon scattering processes, with a distinct nonlinear temperature dependence up to 500 K. This fifth-order anharmonic effect enhances Raman-based temperature sensitivity, yielding a specific sensitivity (Sr) of 0.577 % K-1 at 330 K and remaining above 0.5 % K-1 at elevated temperatures. This study presents the first evidence of fifth-order anharmonic effects enhancing Raman-based temperature sensitivity, establishing Cs2TeCl6 as a versatile candidate for broad-temperature optical thermometry and opening new avenues for precise non-contact temperature sensing in advanced technological applications.
Collapse
Affiliation(s)
- Guangming Niu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jutao Jiang
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xin Liu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yutong Zhang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian, 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- Hefei National Laboratory, Hefei, 230088, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Sharma S, Yadav A, Kaushik K, Salam A, Nandi CK. Assessing the overflowing pile-up effect on the photoluminescence lifetime of nanomaterials. NANOSCALE 2024; 16:16958-16966. [PMID: 39211990 DOI: 10.1039/d4nr01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The tunable complex emissive states with nanosecond to microsecond lifetimes in nanomaterials, arise due to their structural heterogeneity, enabling them with a wide range of advanced optoelectronic applications. However, understanding the complex photoluminescence lifetime in these nanomaterials is critically challenged by the overflowing pile-up effect, which occurs due to the high repetition rate of the light source in the time-correlated single photon counting (TCSPC) technique. Here, we provide a quantitative lifetime analysis, especially in metal nanoclusters, metal complexes, and semiconductor quantum dots, which suggests that the same experimental parameters can mislead the lifetime data interpretation for long-ranged luminescent nanomaterials. We demonstrate that the overflowing pile-up effect could be fatal while analyzing the excited state lifetime. Furthermore, we provide the optimized parameters that could be used to get the actual lifetime data of samples. We hope that our findings will be crucial in obtaining the error-free and accurate excited state dynamics of these long-range lifetime nanomaterials.
Collapse
Affiliation(s)
- Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| |
Collapse
|
3
|
Kurahashi H, Umezawa M, Okubo K, Soga K. Pixel Screening in Lifetime-Based Temperature Mapping Using β-NaYF 4:Nd 3+,Yb 3+ by Time-Gated Near-Infrared Fluorescence Imaging on Deep Tissue in Live Mice. ACS APPLIED BIO MATERIALS 2024; 7:3821-3827. [PMID: 38787698 PMCID: PMC11190971 DOI: 10.1021/acsabm.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. β-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.
Collapse
Affiliation(s)
- Hiroyuki Kurahashi
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | - Masakazu Umezawa
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| | | | - Kohei Soga
- Department of Materials
Science
and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo 125-8585, Katsushika, Japan
| |
Collapse
|
4
|
Puccini A, Liu N, Hemmer E. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges. NANOSCALE 2024; 16:10975-10993. [PMID: 38607258 DOI: 10.1039/d4nr00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Being first proposed as a method to overcome limitations associated with conventional contact thermometers, luminescence thermometry has been extensively studied over the past two decades as a sensitive and fast approach to remote and minimally invasive thermal sensing. Herein, lanthanide (Ln)-doped nanoparticles (Ln-NPs) have been identified as particularly promising candidates, given their outstanding optical properties. Known primarily for their upconversion emission, Ln-NPs have also been recognized for their ability to be excited with and emit in the near-infrared (NIR) regions matching the NIR transparency windows. This sparked the emergence of the development of NIR-NIR Ln-NPs for a wide range of temperature-sensing applications. The shift to longer excitation and emission wavelengths resulted in increased efforts being put into developing nanothermometers for biomedical applications, however most research is still preclinical. This mini-review outlines and addresses the challenges that limit the reliability and implementation of luminescent nanothermometers to real-life applications. Through a critical look into the recent developments from the past 4 years, we highlight attempts to overcome some of the limitations associated with excitation wavelength, thermal sensitivity, calibration, as well as light-matter interactions. Strategies range from use of longer excitation wavelengths, brighter emitters through strategic core/multi-shell architectures, exploitation of host phonons, and a shift from double- to single-band ratiometric as well as lifetime-based approaches to innovative methods based on computation and machine learning. To conclude, we offer a perspective on remaining gaps and where efforts should be focused towards more robust nanothermometers allowing a shift to real-life, e.g., in vivo, applications.
Collapse
Affiliation(s)
- Abigale Puccini
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Kachou I, Saidi K, Ekim U, Dammak M, Çelikbilek Ersundu M, Ersundu AE. Advanced temperature sensing with Er 3+/Yb 3+ co-doped Ba 2GdV 3O 11 phosphors through upconversion luminescence. Dalton Trans 2024; 53:2357-2372. [PMID: 38214574 DOI: 10.1039/d3dt04015a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Optical thermometry is a non-contact temperature sensing technique with widespread applications. It offers precise measurements without physical contact, making it ideal for situations where contact-based methods are impractical. However, improving the accuracy of optical thermometry remains an ongoing challenge. Herein, enhancing the thermometric properties of luminescent thermometers through novel materials or strategies is crucial for developing more precise sensors. Hence, the present study focuses on the application of four-mode luminescence thermometric techniques in sol-gel synthesized Er3+/Yb3+ co-doped Ba2GdV3O11 phosphors for optical temperature sensing in the temperature range of 298-573 K. The upconversion (UC) luminescence is achieved under excitations of 980 nm or 1550 nm, resulting in bright yellow-green emission in the visible spectral range. Temperature sensing is realized by exploiting the UC emissions of 4S3/2, 2H11/2 and 4F7/2 bands, which represent intensity ratios of thermally coupled levels (TCELs) and non-thermally coupled levels (NTCELs) of Er3+/Yb3+, along with the emission lifetimes at 4S3/2. The relative sensitivity (Sr) values for TCELs exhibit a gradual decrease with rising temperature, reaching a maximum of 1.1% K-1 for 980 nm excitation and 0.86% K-1 for 1550 nm excitation at 298 K. Conversely, for NTCELs, the highest Sr value observed is 0.9% K-1 at 298 K for 1550 nm excitation. Moreover, the emission lifetimes at 4S3/2 yield notably high Sr values of up to 5.0% μs K-1 (at 425 K). Furthermore, the studied phosphors have a sub-degree thermal resolution, making them excellent materials for accurate temperature sensing. Overall, this study provides a promising new direction for the development of more precise and reliable optical thermometry techniques, which could have important implications for a range of scientific and industrial optical temperature sensing applications.
Collapse
Affiliation(s)
- Ikhlas Kachou
- Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax, BP 1171, Sfax, Tunisia.
| | - Kamel Saidi
- Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax, BP 1171, Sfax, Tunisia.
| | - Utku Ekim
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Turkiye.
| | - Mohamed Dammak
- Laboratoire de Physique Appliquée, Groupe de Physique des Matériaux Luminescents, Faculté des Sciences de Sfax, Département de Physique, Université de Sfax, BP 1171, Sfax, Tunisia.
| | - Miray Çelikbilek Ersundu
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Turkiye.
| | - Ali Erçin Ersundu
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Turkiye.
| |
Collapse
|
7
|
Li G, Chen X, Wang M, Cheng S, Yang D, Wu D, Han Y, Jia M, Li X, Zhang Y, Shan C, Shi Z. Regulating Exciton De-Trapping of Te 4+ -Doped Zero-Dimensional Scandium-Halide Perovskite for Fluorescence Thermometry with Record High Time-Resolved Thermal Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305495. [PMID: 37603794 DOI: 10.1002/adma.202305495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Fluorescence thermometry has been propelled to the forefront of scientific attention due to its high spatial resolution and remote non-invasive detection. However, recent generations of thermometers still suffer from limited thermal sensitivity (Sr ) below 10% change per Kelvin. Herein, this work presents an ideal temperature-responsive fluorescence material through Te4+ -doped 0D Cs2 ScCl5 ·H2 O, in which isolated polyhedrons endow highly localized electronic structures, and the strong electron-phonon coupling facilitates the formation of self-trapped excitons (STEs). With rising temperature, the dramatic asymmetric expansion of the soft lattice induces increased defects, strong exciton-phonon coupling, and low thermal activation energy, which evokes a rapid de-trapping process of STEs, enabling several orders of magnitude changes in the fluorescence lifetime over a narrow temperature range. After regulating the de-trapping process with different Te4+ doping, a record-high Sr (27.36% K-1 ) of fluorescence lifetime-based detection is achieved at 325 K. The robust stability against multiple heating/cooling cycles and long-term measurements enables a low temperature uncertainty of 0.067 K. Further, the developed thermometers are demonstrated for the remote local monitoring of operating temperature on internal electronic components. It is believed that this work constitutes a solid step towards building the next generation of ultrasensitive thermometers based on low-dimensional metal halides.
Collapse
Affiliation(s)
- Gaoqiang Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Meng Wang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Shanshan Cheng
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Dongwen Yang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Yanbing Han
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| |
Collapse
|
8
|
Gálico DA, Murugesu M. Toward Magneto-Optical Cryogenic Thermometers with High Sensitivity: A Magnetic Circular Dichroism Based Thermometric Approach. Angew Chem Int Ed Engl 2023; 62:e202309152. [PMID: 37595074 DOI: 10.1002/anie.202309152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Remote temperature probing at the cryogenic range is of utmost importance for the advancement of future quantum technologies. Despite the notable achievements in luminescent thermometers, accurately measuring temperatures below 10 K remains a challenging endeavor. In this study, we propose a novel magneto-optical thermometric approach based on the magnetic-circular dichroism (MCD) technique, which offers unprecedented capabilities for meticulous temperature variation analysis at cryogenic temperatures. The inherent temperature sensitivity of the MCD C-term, in conjunction with both positive and negative signals, enables highly sensitive magneto-optical temperature probing. Additionally, a groundbreaking relative thermal sensitivity value of 95.3 % K-1 at 2.54 K can be achieved using a mononuclear lanthanide complex, [[Ho(acac)3 (phen)], in the presence of a 0.25 T applied magnetic field and using a combination of multiparametric thermal read-out with multiple regression. These results unequivocally demonstrate the viability and effectiveness of our methodology for cryogenic temperature sensing.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
9
|
Pelluau T, Sene S, Ali LMA, Félix G, Manhes F, Carneiro Neto AN, Carlos LD, Albela B, Bonneviot L, Oliviero E, Gary-Bobo M, Guari Y, Larionova J. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+/Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. NANOSCALE 2023; 15:14409-14422. [PMID: 37614145 DOI: 10.1039/d3nr01851b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Despite the great effort made in recent years on lanthanide-based ratiometric luminescent nanothermometers able to provide temperature measurements in water, their design remains challenging. We report on the synthesis and properties of efficient ratiometric nanothermometers that are based on mesoporous stellate nanoparticles (MSN) of ca. 90 nm functionalized with an acetylacetonate (acac) derivative inside the pores and loaded with β-diketonate-Tb3+/Eu3+ complexes able to work in water, in PBS or in cells. Encapsulating a [(Tb/Eu)9(acac)16(μ3-OH)8(μ4-O)(μ4-OH)] complex (Tb/Eu ratio = 19/1 and 9/1) led to hybrid multifunctionalized nanoparticles exhibiting a Tb3+ and Eu3+ characteristic temperature-dependent luminescence with a high rate Tb3+-to-Eu3+ energy transfer. According to theoretical calculations, the modifications of photoluminescence properties and the increase in the pairwise Tb3+-to-Eu3+ energy transfer rate by about 10 times can be rationalized as a change of the coordination number of the Ln3+ sites of the complex from 7 to 8 accompanied by a symmetry evolution from Cs to C4v and a slight shortening of intramolecular Ln3+-Ln3+ distances upon the effect of encapsulation. These nanothermometers operate in the 20-70 °C range with excellent photothermal stability, cyclability and repeatability (>95%), displaying a maximum relative thermal sensitivity of 1.4% °C-1 (at 42.7 °C) in water. Furthermore, they can operate in cells with a thermal sensitivity of 8.6% °C-1 (at 40 °C), keeping in mind that adjusting the calibration for each system is necessary to ensure accurate measurements.
Collapse
Affiliation(s)
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luis D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Bonneviot
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Erwan Oliviero
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
10
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
11
|
Gálico DA, Murugesu M. Boosting the sensitivity with time-gated luminescence thermometry using a nanosized molecular cluster aggregate. NANOSCALE 2023; 15:5778-5785. [PMID: 36857687 DOI: 10.1039/d2nr06382d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Luminescence thermometry with trivalent lanthanide ions is a promising avenue for contactless temperature probing. The area has been growing exponentially for the last two decades, and its viability has been successfully demonstrated in various research domains. However, moving from laboratory equipment to real-life applications remains a challenging task. One of the reasons is the possibility of a background luminescence from the probing device or probed environment. To tackle this issue, we elegantly incorporate a rarely explored thermometric approach called time-gated luminescence thermometry (TGLT). Furthermore, we demonstrate an enhanced relative sensitivity through this innovative approach and a path to move toward practical application.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
12
|
Solvent-dependent carbon dots for multifunctional sensing of temperature, pH, and proton pump inhibitors. Anal Chim Acta 2022; 1228:340341. [DOI: 10.1016/j.aca.2022.340341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022]
|
13
|
Ye Y, Lu K, Qi J. Developing Smart Temperature Sensing Window Based on Highly Transparent Rare-Earth Doped Yttrium Zirconate Ceramics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39072-39080. [PMID: 35973972 DOI: 10.1021/acsami.2c11404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lanthanide-ion-based thermometers have been widely researched and utilized as contactless temperature sensing materials. Cooperating with the unique optical and excellent physical properties of transparent ceramics, Er3+/Yb3+ co-doped Y2Zr2O7 transparent ceramics were successfully fabricated as temperature sensing window materials. Homogeneous distribution of elements inside samples together with high transmittance (nearly 73%) makes it possible as an observing window. Upon excitation at 980 nm, room-temperature luminescent performance was systemically researched for explaining the energy transfer mechanism between Yb3+ and Er3+ ions. The FIR method was introduced for thermally coupled energy levels to realize temperature sensing ability. Detecting sensitivity at different temperatures was also calculated (1.24% K-1 at 303 K), suggesting that Yb3+, Er3+:Y2Zr2O7 are adequate for high sensitivity temperature detecting application. It is also investigated that the concentration of Yb3+ ions not only affects the emission color at room-temperature but also has influence on the sensitivity of temperature and 10 mol % Yb3+, 2 mol % Er3+:Y2Zr2O7 was found to be the most sensitive one. A demonstration experiment was also carried out to validate its application as a smart temperature sensing window. These results suggested that Yb3+, Er3+:Y2Zr2O7 transparent ceramics can have potential for temperature monitoring applications, especially as novel window materials under extreme circumstances.
Collapse
Affiliation(s)
- Yucheng Ye
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Kailei Lu
- College of Physics, Sichuan University, Chengdu 610064, China
- Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064, China
| | - Jianqi Qi
- College of Physics, Sichuan University, Chengdu 610064, China
- Key Laboratory of High Energy Density Physics of Ministry of Education, Sichuan University, Chengdu 610064, China
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Liao J, Wang M, Lin F, Han Z, Fu B, Tu D, Chen X, Qiu B, Wen HR. Thermally boosted upconversion and downshifting luminescence in Sc 2(MoO 4) 3:Yb/Er with two-dimensional negative thermal expansion. Nat Commun 2022; 13:2090. [PMID: 35440128 PMCID: PMC9019035 DOI: 10.1038/s41467-022-29784-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
Rare earth (RE3+)-doped phosphors generally suffer from thermal quenching, in which their photoluminescence (PL) intensities decrease at high temperatures. Herein, we report a class of unique two-dimensional negative-thermal-expansion phosphor of Sc2(MoO4)3:Yb/Er. By virtue of the reduced distances between sensitizers and emitters as well as confined energy migration with increasing the temperature, a 45-fold enhancement of green upconversion (UC) luminescence and a 450-fold enhancement of near-infrared downshifting (DS) luminescence of Er3+ are achieved upon raising the temperature from 298 to 773 K. The thermally boosted UC and DS luminescence mechanism is systematically investigated through in situ temperature-dependent Raman spectroscopy, synchrotron X-ray diffraction and PL dynamics. Moreover, the luminescence lifetime of 4I13/2 of Er3+ in Sc2(MoO4)3:Yb/Er displays a strong temperature dependence, enabling luminescence thermometry with the highest relative sensitivity of 12.3%/K at 298 K and low temperature uncertainty of 0.11 K at 623 K. These findings may gain a vital insight into the design of negative-thermal-expansion RE3+-doped phosphors for versatile applications. Rare-earth doped phosphors with negative thermal expansion (NTE) may display thermally-enhanced emission, but their performance is generally limited. Here the authors report thermally-boosted green upconversion luminescence and near-infrared downshifting luminescence in Sc2(MoO4)3:Yb/Er phosphors with two-dimensional NTE, and their application in temperature sensing.
Collapse
Affiliation(s)
- Jinsheng Liao
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P. R. China.
| | - Minghua Wang
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P. R. China
| | - Fulin Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhuo Han
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P. R. China
| | - Biao Fu
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P. R. China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Bao Qiu
- Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, P. R. China
| |
Collapse
|
15
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
16
|
Wang M, Hu C, Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. BIOSENSORS 2022; 12:131. [PMID: 35200391 PMCID: PMC8869906 DOI: 10.3390/bios12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 05/16/2023]
Abstract
Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.
Collapse
Affiliation(s)
- Mingkai Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Shahzad MK, Farooq U, Raza A, Abbas G, Ikram M, Zhang Y. Investigation on optical temperature sensing behaviour via Ag island-enhanced luminescence doped β-NaGdF 4:Yb 3+/Tm 3+ films/microfibers. RSC Adv 2021; 11:36569-36576. [PMID: 35494388 PMCID: PMC9043463 DOI: 10.1039/d1ra06336g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
In this study, silver (Ag) island modified up-conversion nano-particle (NaGdF4:Yb3+/Tm3+) thin films were prepared via electrostatic layer by layer (LBL) and spin coating techniques. The spectroscopic results indicated that adding Ag nanoparticles could significantly enhance the up-conversion emission of NaGdF4:Yb3+/Tm3+ thin films at 452 nm and 476 nm. The maximum enhancement factor of ∼15.6 was reached at 476 nm. Furthermore, we prepared microfibers from upconverting nanoparticles solution, the application of microfibers as active and passive waveguides was analyzed by observing the performance of microfibers with and without Ag under 980 nm excitation of the laser source. The fluorescence intensity ratio (FIR) method was adopted to evaluate microfiber sensitivity. The intensity-based temperature sensitivity of blue emission from a single microfiber containing up-conversion nanomaterials (NaGdF4:Yb3+/Tm3+) and Ag nanoparticles reached up to 0.018 K-1 at 310 K compared to 0.0029 K-1 in Ag-free microfiber. Our results suggest that the novel material can be used to construct new nano-thermometers, useful both in biological experiments as well as industrial research.
Collapse
Affiliation(s)
- Muhammad Khuram Shahzad
- Institute of Physics, Islamia University of Bahawalpur, Bahawalnagar Campus Pakistan
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT) Harbin 150080 China
| | - Usman Farooq
- School of Chemistry and Chemical Engineering, Henan University Kaifeng China
| | - Adil Raza
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Jiangjun Rd. Campus 29 Jiangjun Ave. Nanjing 210016 P. R. China
| | - Ghulam Abbas
- Department of Physics, Riphah International University, Faisalabad Campus Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Punjab 54000 Pakistan
| | - Yundong Zhang
- National Key Laboratory of Tunable Laser Technology, Institute of Opto-Electronics, Department of Electronic Science and Technology, Harbin Institute of Technology (HIT) Harbin 150080 China
| |
Collapse
|
18
|
Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Fernanda Torresan M, Morrone J, Sorbello C, Etchenique R, Angelomé PC, Wolosiuk A. Emissive Platforms Employing NaYF
4
‐based Upconverting Nanoparticles and Mesoporous Metal Oxide Thin Films. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Fernanda Torresan
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Josefina Morrone
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Cecilia Sorbello
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Roberto Etchenique
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Paula C. Angelomé
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Alejandro Wolosiuk
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| |
Collapse
|
20
|
Photoluminescent Metal Complexes and Materials as Temperature Sensors—An Introductory Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9050109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Temperature is a fundamental physical quantity whose accurate measurement is of critical importance in virtually every area of science, engineering, and biomedicine. Temperature can be measured in many ways. In this pedagogically focused review, we briefly discuss various standard contact thermometry measurement techniques. We introduce and touch upon the necessity of non-contact thermometry, particularly for systems in extreme environments and/or in rapid motion, and how luminescence thermometry can be a solution to this need. We review the various aspects of luminescence thermometry, including different types of luminescence measurements and the numerous materials used as luminescence sensors. We end the article by highlighting other physical quantities that can be measured by luminescence (e.g., pressure, electric field strength, magnetic field strength), and provide a brief overview of applications of luminescence thermometry in biomedicine.
Collapse
|
21
|
Ma Y, Liu Y, Wang Y, Zhang F, Yang D. A novel sodium-fluorescent crystal. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201987. [PMID: 33959353 PMCID: PMC8074955 DOI: 10.1098/rsos.201987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In this work, a novel sodium-fluorescent crystal (Na-FS) was synthesized from 4-dimethylaminobenzoic acid and sodium hydroxide by one-pot hydrothermal method. The structure and conformation of Na-FS were confirmed by single-crystal X-ray diffraction and scanning electron microscope, and the optical properties were studied by fluorescence spectrometer. The results showed that: Na-FS was a triclinic crystal, space group was P-1, cell parameters a, b and c were 10.5113(3), 15.9198(5) and 15.9560(5) Å, respectively, and the number of independent atoms Z in a structure cell was two. Additionally, Na-FS has a blue fluorescence emission (around 360 nm under excited at the range of 230-300 nm) with great photostability and photobleaching resistance, and the quantum yield of Na-FS is 30.58%.
Collapse
Affiliation(s)
- Yunsu Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Yongjie Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Yuan Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Fan Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, People's Republic of China
| |
Collapse
|
22
|
Morad V, Yakunin S, Benin BM, Shynkarenko Y, Grotevent MJ, Shorubalko I, Boehme SC, Kovalenko MV. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007355. [PMID: 33480450 PMCID: PMC11481058 DOI: 10.1002/adma.202007355] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Bogdan M. Benin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Matthias J. Grotevent
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Simon C. Boehme
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| |
Collapse
|
23
|
Schuster C, Kuntz F, Strasser A, Härtling T, Dornich K, Richter D. 3D relative dose measurement with a μm thin dosimetric layer. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Maciejewska K, Bednarkiewicz A, Meijerink A, Marciniak L. Correlation between the Covalency and the Thermometric Properties of Yb 3+/Er 3+ Codoped Nanocrystalline Orthophosphates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:2659-2665. [PMID: 33584938 PMCID: PMC7876742 DOI: 10.1021/acs.jpcc.0c09532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Lanthanide-doped NaYF4 nanoparticles are most frequently studied host materials for numerous biomedical applications. Although efficient upconversion can be obtained in fluoride nanomaterials and good homogeneity of size and morphology is achieved, they are not very predestined for extensive material optimization toward enhanced features and functions. Here, we study the impact of rare-earth metals RE = Y, Lu, La, and Gd ions within Yb3+/Er3+ codoped nanocrystalline REPO4 orthophosphates. The enhanced luminescent thermometry features were found to be in relation to the covalency of RE3+-O2- bonds being modulated by these optically inactive rare-earth ion substitutes. Up to 30% relative sensitivity enhancement was found (from ca. 3.0 to ca. 3.8%/K at -150 °C) by purposefully increasing the covalence of the RE3+-O2- bond. These studies form the basis for intentional optimization thermal couple-based luminescent thermometers such as Yb3+-Er3+ upconverting ratiometric thermometer.
Collapse
Affiliation(s)
- K. Maciejewska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - A. Bednarkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - A. Meijerink
- Debye
Institute for Nanomaterials Science, Utrecht
University Princetonplein 1, Utrecht 3584, The Netherlands
| | - L. Marciniak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
25
|
Piwoński H, Wang Y, Li W, Michinobu T, Habuchi S. Millimeter-Deep Detection of Single Shortwave-Infrared-Emitting Polymer Dots through Turbid Media. NANO LETTERS 2020; 20:8803-8810. [PMID: 33206524 DOI: 10.1021/acs.nanolett.0c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluorescence imaging at longer wavelengths, especially in the shortwave-infrared (SWIR: 1000-1700 nm) region, leads to a substantial decrease in light attenuation, scattering, and background autofluorescence, thereby enabling enhanced penetration into biological tissues. The limited selection of fluorescent probes is a major bottleneck in SWIR fluorescence imaging. Here, we develop SWIR-emitting nanoparticles composed of donor-acceptor-type conjugated polymers. The bright SWIR fluorescence of the polymer dots (primarily attributable to their large absorption cross-section and high fluorescence saturation intensity (as high as 113 kW·cm-2)) enables the unprecedented detection of single particles as small as 14 nm through millimeter-thick turbid media. Unlike most SWIR-emitting nanomaterials, which have an excited-state lifetime in the range of microseconds to milliseconds, our polymer dots exhibit a subnanosecond excited-state lifetime. These characteristics enable us to demonstrate new time-gated single-particle imaging with a high signal-to-background ratio. These findings expand the range of potential applications of single-particle deep-tissue imaging.
Collapse
Affiliation(s)
- Hubert Piwoński
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Yang Wang
- Tokyo Institute of Technology, Department of Materials Science and Engineering, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Wei Li
- Tokyo Institute of Technology, Department of Materials Science and Engineering, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Tokyo Institute of Technology, Department of Materials Science and Engineering, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Habuchi
- King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Xu Y, Yang Y, Lin S, Xiao L. Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing. Anal Chem 2020; 92:15632-15638. [DOI: 10.1021/acs.analchem.0c03912] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yueling Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Pominova D, Proydakova V, Romanishkin I, Ryabova A, Kuznetsov S, Uvarov O, Fedorov P, Loschenov V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF 4:Yb 3+, Ho 3+, Er 3+@NaYF 4 Nanothermometers. NANOMATERIALS 2020; 10:nano10101992. [PMID: 33050341 PMCID: PMC7601673 DOI: 10.3390/nano10101992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
The short-wave infrared region (SWIR) is promising for deep-tissue visualization and temperature sensing due to higher penetration depth and reduced scattering of radiation. However, the strong quenching of luminescence in biological media and low thermal sensitivity of nanothermometers in this region are major drawbacks that limit their practical application. Nanoparticles doped with rare-earth ions are widely used as thermal sensors operating in the SWIR region through the luminescence intensity ratio (LIR) approach. In this study, the effect of the shell on the sensitivity of temperature determination using NaGdF4 nanoparticles doped with rare-earth ions (REI) Yb3+, Ho3+, and Er3+ coated with an inert NaYF4 shell was investigated. We found that coating the nanoparticles with a shell significantly increases the intensity of luminescence in the SWIR range, prevents water from quenching luminescence, and decreases the temperature of laser-induced heating. Thermometry in the SWIR spectral region was demonstrated using synthesized nanoparticles in dry powder and in water. The core-shell nanoparticles obtained had intense luminescence and made it possible to determine temperatures in the range of 20–40 °C. The relative thermal sensitivity of core-shell NPs was 0.68% °C−1 in water and 4.2% °C−1 in dry powder.
Collapse
|
28
|
Benin BM, McCall KM, Wörle M, Morad V, Aebli M, Yakunin S, Shynkarenko Y, Kovalenko MV. The Rb
7
Bi
3−3
x
Sb
3
x
Cl
16
Family: A Fully Inorganic Solid Solution with Room‐Temperature Luminescent Members. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bogdan M. Benin
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Kyle M. McCall
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Michael Wörle
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Viktoriia Morad
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Marcel Aebli
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| |
Collapse
|
29
|
Benin BM, McCall KM, Wörle M, Morad V, Aebli M, Yakunin S, Shynkarenko Y, Kovalenko MV. The Rb 7 Bi 3-3x Sb 3x Cl 16 Family: A Fully Inorganic Solid Solution with Room-Temperature Luminescent Members. Angew Chem Int Ed Engl 2020; 59:14490-14497. [PMID: 32472624 PMCID: PMC7496723 DOI: 10.1002/anie.202003822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.
Collapse
Affiliation(s)
- Bogdan M. Benin
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Kyle M. McCall
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Michael Wörle
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
| | - Viktoriia Morad
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Marcel Aebli
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| |
Collapse
|
30
|
Kitos AA, Gálico DA, Castañeda R, Ovens JS, Murugesu M, Brusso JL. Stark Sublevel-Based Thermometry with Tb(III) and Dy(III) Complexes Cosensitized via the 2-Amidinopyridine Ligand. Inorg Chem 2020; 59:11061-11070. [DOI: 10.1021/acs.inorgchem.0c01534] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandros A. Kitos
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Diogo A. Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Raúl Castañeda
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey S. Ovens
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Jaclyn L. Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
31
|
Bednarkiewicz A, Marciniak L, Carlos LD, Jaque D. Standardizing luminescence nanothermometry for biomedical applications. NANOSCALE 2020; 12:14405-14421. [PMID: 32633305 DOI: 10.1039/d0nr03568h] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Luminescence nanothermometry enables accurate, remote, and all-optically-based thermal sensing. Notwithstanding its fast development, there are serious obstacles hindering reproducibility and reliable quantitative assessment of nanothermometers, which impede the intentional design, optimization and use of these sensors. These issues include ambiguities or absence of established universal rules for quantitative evaluation, incorrect assumptions about the mechanisms behind the thermal response of the sensors as well as the dependence of the nanothermometers readout on external conditions and host materials themselves. In this perspective article, we discuss these problems and propose a series of standardization guidelines to be followed. This critical discourse constitutes the first required step towards the ubiquitous acceptance, by the scientific community, of luminescence thermometry as a reliable tool for remote temperature determination in numerous practical biomedical implementations.
Collapse
Affiliation(s)
- Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Poland.
| | - Lukasz Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Poland.
| | - Luís D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniel Jaque
- Fuorescence Imaging Group, Universidad Autónoma de Madrid, Madrid 28049, Spain and Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, Ctra. Colmenar Viejo, km., 9100 28034 Madrid, Spain
| |
Collapse
|
32
|
Morad V, Yakunin S, Kovalenko MV. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides. ACS MATERIALS LETTERS 2020; 2:845-852. [PMID: 32954358 PMCID: PMC7493224 DOI: 10.1021/acsmaterialslett.0c00174] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 05/25/2023]
Abstract
Halides of ns2 metal ions have recently regained broad research interest as bright narrowband and broadband emitters. Sb(III) is particularly appealing for its oxidative stability (compared to Ge2+ and Sn2+) and low toxicity (compared to Pb2+). Square pyramidal SbX5 anion had thus far been the most common structural motif for realizing high luminescence efficiency, typically when cocrystallized with an organic cation. Luminescent hybrid organic-inorganic halides with octahedral coordination of Sb(III) remain understudied, whereas fully inorganic compounds show very limited structural engineerability. We show that the host-guest complexation of alkali metal cations with crown ethers fosters the formation of zero-dimensional Sb(III) halides and allows for adjusting the coordination number (5 or 6). The obtained compounds exhibit bright photoluminescence with quantum yields of up to 89% originating from self-trapped excitons, with emission energies, Stokes shifts, and luminescence lifetimes finely-adjustable by structural engineering. A combination of environmental stability and strong, intrinsic temperature-dependence of the luminescence lifetimes in the nanosecond-to-microsecond range nominate these compounds as highly potent luminophores for remote thermometry and thermography owing to their sensitivity range of 200-450 K and high specific sensitivities of 0.04 °C-1.
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Sergii Yakunin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
33
|
Zhang W, Li J, Lei H, Li B. Temperature-dependent Förster resonance energy transfer from upconversion nanoparticles to quantum dots. OPTICS EXPRESS 2020; 28:12450-12459. [PMID: 32403742 DOI: 10.1364/oe.386601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The Förster resonance energy transfer (FRET) from the β-NaYF4:Yb3+, Er3+/NaYF4 upconversion nanoparticles (UCNPs) to ZnCdSe/ZnS quantum dots (QDs) as a function of temperature (77-427 K) is demonstrated. With an increasing of temperature, both the intensity and peak position of QDs emission variated, which is attributed to the combining of the FRET and thermal quenching effect. By analyzing the dependence of the photoluminescence (PL) spectra on temperature, the UCNP + QD sample can be considered as dual thermal probes with high sensitivity based on either the UCL or the spectral shift of QD emission under 980 nm excitation. The lifetime of the UCNP and UCNP + QD samples are collected to investigate the dynamics of the FRET at various temperatures, showing a decrease and then an increase of the FRET efficiency from UCNPs to QDs with temperature from 77 to 427 K. This result is mainly attributed to the variation of the Förster distance R0 with the increasing of temperature. The work will be significant to detect the nanoscale interaction and it can be widely applied in biomedical, sensing and imaging.
Collapse
|
34
|
Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102135. [DOI: 10.1016/j.nano.2019.102135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/12/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
|
35
|
Liu MH, Wang X, Xu Q, Piao RQ, Wang CY, Liu DY, Yuan N, Zhang ZB, Wong WH, Zhang DL. Sextuple ratiometric thermometry based on 980-nm-upconverted green fluorescence of Er 3+ ions in submicron crystals. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110512. [PMID: 31924017 DOI: 10.1016/j.msec.2019.110512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/10/2019] [Accepted: 11/28/2019] [Indexed: 11/18/2022]
Abstract
980-nm-upconverted 530 and 550 nm Er3+ green fluorescence spectra of Er3+/Yb3+-codoped NaGd(WO4)2 submicron crystals were measured in the temperature range of 298-383 K. A sextuple ratiometric thermometry is proposed. It is established on the basis of six schemes of fluorescence intensity ratio (FIR) that considers three component peaks of the 530 nm emission band and two component peaks of the 550 nm emission band, which involve electronic transitions between two Stark sublevels of Er3+. The study shows that the phosphor shows strong green fluorescence, which is verified by measured quantum yield, and thermally stable spectral structure desired for the sextuple ratiometric thermometry. All of the six FIR schemes display highly efficient sensing performances with slightly different thermal sensitivities. Each scheme gives a temperature value and the six schemes give an averaged result. In parallel, we have also carried out an ex vivo experimental study on the temperature characteristics of the green fluorescence of the phosphor. Almost same results have been obtained, verifying biological applicability of the phosphor. The ex vivo experimental results also show that the sextuple thermometry increases considerably the accuracy and reliability of temperature measurement in comparison with the conventional intensity integration method.
Collapse
Affiliation(s)
- Mei-Hong Liu
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Xiao Wang
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Qing Xu
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Rui-Qi Piao
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Chang-Yue Wang
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Da-Yu Liu
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China
| | - Ning Yuan
- Tianjin Sino-German University of Applied Sciences, 2 Yanshan Rd, Haihe Education Park, Tianjin 300350, China
| | - Zi-Bo Zhang
- Department of Engineering, Pierre and Marie Curie University (University of Paris VI), 4 place Jussieu, 75005 Paris, France
| | - Wing-Han Wong
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - De-Long Zhang
- Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, and Key Laboratory of Optoelectronic Information Technology (Ministry of Education),Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
Utochnikova V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Chihara T, Umezawa M, Miyata K, Sekiyama S, Hosokawa N, Okubo K, Kamimura M, Soga K. Biological Deep Temperature Imaging with Fluorescence Lifetime of Rare-Earth-Doped Ceramics Particles in the Second NIR Biological Window. Sci Rep 2019; 9:12806. [PMID: 31488857 PMCID: PMC6728332 DOI: 10.1038/s41598-019-49291-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023] Open
Abstract
Contactless thermal imaging generally relies on mid-infrared cameras and fluorescence imaging with temperature-sensitive phosphors. Fluorescent thermometry in the near-infrared (NIR) region is an emerging technique for analysing deep biological tissues but still requires observation depth calibration. We present an NIR fluorescence time-gated imaging (TGI) thermometry technology based on fluorescence lifetime, an intrinsic fluorophore time constant unrelated to observation depth. Fluorophore used is NaYF4 co-doped with Nd3+ and Yb3+ that emits fluorescence at 1000 nm. An agarose gel-based phantom with the fluorophore embedded at a 5-mm depth was covered by sheets of meat to vary the observation depth. The temperature was determined independently from depth by sequences of NIR fluorescence decay images, and the rate of change in the fluorescence lifetime per temperature was almost constant (-0.0092 ~ -0.010 °C-1) at depths ranging from 0 to 1.4 mm of meat, providing non-contact and absolute measurements of temperature in deep biological tissues.
Collapse
Affiliation(s)
- Takumi Chihara
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan.
| | - Keiji Miyata
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
| | - Shota Sekiyama
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
| | - Naoki Hosokawa
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
| | - Kyohei Okubo
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, Japan.
- Imaging Frontier Center (IFC), Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Japan.
| |
Collapse
|
38
|
Yakunin S, Benin BM, Shynkarenko Y, Nazarenko O, Bodnarchuk MI, Dirin DN, Hofer C, Cattaneo S, Kovalenko MV. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. NATURE MATERIALS 2019; 18:846-852. [PMID: 31263225 DOI: 10.1038/s41563-019-0416-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/23/2019] [Indexed: 05/18/2023]
Abstract
Although metal-halide perovskites have recently revolutionized research in optoelectronics through a unique combination of performance and synthetic simplicity, their low-dimensional counterparts can further expand the field with hitherto unknown and practically useful optical functionalities. In this context, we present the strong temperature dependence of the photoluminescence lifetime of low-dimensional, perovskite-like tin-halides and apply this property to thermal imaging. The photoluminescence lifetimes are governed by the heat-assisted de-trapping of self-trapped excitons, and their values can be varied over several orders of magnitude by adjusting the temperature (up to 20 ns °C-1). Typically, this sensitive range spans up to 100 °C, and it is both compound-specific and shown to be compositionally and structurally tunable from -100 to 110 °C going from [C(NH2)3]2SnBr4 to Cs4SnBr6 and (C4N2H14I)4SnI6. Finally, through the implementation of cost-effective hardware for fluorescence lifetime imaging, based on time-of-flight technology, these thermoluminophores have been used to record thermographic videos with high spatial and thermal resolution.
Collapse
Affiliation(s)
- Sergii Yakunin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Bogdan M Benin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Olga Nazarenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Christoph Hofer
- Swiss Center for Electronics and Microtechnology (CSEM), Center Landquart, Landquart, Switzerland
| | - Stefano Cattaneo
- Swiss Center for Electronics and Microtechnology (CSEM), Center Landquart, Landquart, Switzerland
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
39
|
Ji Z, Cheng Y, Cui X, Lin H, Xu J, Wang Y. Heating-induced abnormal increase in Yb3+ excited state lifetime and its potential application in lifetime luminescence nanothermometry. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01052h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heating-induced abnormal increase in Yb3+ excited state lifetime is demonstrated with potential application in lifetime luminescence nanothermometry.
Collapse
Affiliation(s)
- Zeliang Ji
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yao Cheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Xiangshui Cui
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Hang Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Ju Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yuansheng Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- and Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
40
|
Yao L, Li Y, Xu D, Lin H, Peng Y, Yang S, Zhang Y. Upconversion luminescence enhancement and lifetime based thermometry of Na(Gd/Lu)F4 solid solutions. NEW J CHEM 2019. [DOI: 10.1039/c8nj06385k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Upconversion luminescence and lifetime based thermal sensing performance enhancements of NaGdF4 are achieved by a simple solid solution strategy.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering/School of Physics
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Yongjin Li
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering/School of Physics
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Dekang Xu
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou 516007
- P. R. China
| | - Hao Lin
- School of Physics and Electronic Engineering
- Guangzhou University
- Guangzhou 510006
- P. R. China
| | - Yan Peng
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering/School of Physics
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Shenghong Yang
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering/School of Physics
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies
- School of Materials Science and Engineering/School of Physics
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
41
|
Fu Y, Zhao L, Guo Y, Yu H. Up-conversion luminescence lifetime thermometry based on the 1G4 state of Tm3+ modulated by cross relaxation processes. Dalton Trans 2019; 48:16034-16040. [PMID: 31612884 DOI: 10.1039/c9dt03452h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The first study on the up-conversion luminescence lifetime thermometry based on the 1G4 state of Tm3+ modulated by cross relaxation processes.
Collapse
Affiliation(s)
- Yuting Fu
- Key Laboratory of Weak-Light Nonlinear Photonics
- Ministry of Education
- School of Physics
- Nankai University
- Tianjin 300071
| | - Lijuan Zhao
- Key Laboratory of Weak-Light Nonlinear Photonics
- Ministry of Education
- School of Physics
- Nankai University
- Tianjin 300071
| | - Yuao Guo
- Key Laboratory of Weak-Light Nonlinear Photonics
- Ministry of Education
- School of Physics
- Nankai University
- Tianjin 300071
| | - Hua Yu
- Key Laboratory of Weak-Light Nonlinear Photonics
- Ministry of Education
- School of Physics
- Nankai University
- Tianjin 300071
| |
Collapse
|
42
|
Wang C, Hu T, Thomas T, Song S, Wen Z, Wang C, Song Q, Yang M. Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. NANOSCALE 2018; 10:21809-21817. [PMID: 30457150 DOI: 10.1039/c8nr07445c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorescence-based nanothermometers have potential to offer accuracy in the measurement of temperature using non-contact approaches. Herein, a C-dot/C-dot based dual-emission temperature sensing platform is fabricated through the electrostatic self-assembly of two kinds of fluorescent CDs with opposite charges. This dual-emission platform consists of several nearly-spherical CDs with two emission centers in blue (440 nm) and orange (590 nm) regions. The orange fluorescence exhibits discernible response to external temperatures in the range of ∼15 to 85 °C; on the other hand, the blue fluorescence remains nearly constant. A continuous fluorescence color change in response to temperature from orange to blue can be clearly observed by the naked eye. Thus, the as-prepared C-dot based dual-emission nanospheres can be used for optical thermometry with high reproducibility and sensitivity (0.93%/°C). Detailed characterization shows that temperature (in the 15-85 °C window) impacts the surface states of orange emissive CDs, leaving the blue emissive CDs unaffected. A model is proposed to explain the observations. Finally, by taking advantage of the excellent biocompatibility and stability, the CD based fluorescent nanothermometer is successfully used for the visual measurement of intracellular temperature variations.
Collapse
Affiliation(s)
- Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical & Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pickel AD, Teitelboim A, Chan EM, Borys NJ, Schuck PJ, Dames C. Apparent self-heating of individual upconverting nanoparticle thermometers. Nat Commun 2018; 9:4907. [PMID: 30464256 PMCID: PMC6249317 DOI: 10.1038/s41467-018-07361-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/19/2018] [Indexed: 11/26/2022] Open
Abstract
Individual luminescent nanoparticles enable thermometry with sub-diffraction limited spatial resolution, but potential self-heating effects from high single-particle excitation intensities remain largely uninvestigated because thermal models predict negligible self-heating. Here, we report that the common "ratiometric" thermometry signal of individual NaYF4:Yb3+,Er3+ nanoparticles unexpectedly increases with excitation intensity, implying a temperature rise over 50 K if interpreted as thermal. Luminescence lifetime thermometry, which we demonstrate for the first time using individual NaYF4:Yb3+,Er3+ nanoparticles, indicates a similar temperature rise. To resolve this apparent contradiction between model and experiment, we systematically vary the nanoparticle's thermal environment: the substrate thermal conductivity, nanoparticle-substrate contact resistance, and nanoparticle size. The apparent self-heating remains unchanged, demonstrating that this effect is an artifact, not a real temperature rise. Using rate equation modeling, we show that this artifact results from increased radiative and non-radiative relaxation from higher-lying Er3+ energy levels. This study has important implications for single-particle thermometry.
Collapse
Affiliation(s)
- Andrea D Pickel
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nicholas J Borys
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - P James Schuck
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Chris Dames
- Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
44
|
Savchuk OA, Carvajal JJ, Brites CDS, Carlos LD, Aguilo M, Diaz F. Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. NANOSCALE 2018; 10:6602-6610. [PMID: 29578227 DOI: 10.1039/c7nr08758f] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The rapid evolution in luminescence thermometry in the last few years gradually shifted the research from the fabrication of more sensitive nanoarchitectures towards the use of the technique as a tool for thermal bioimaging and for the unveiling of properties of the thermometers themselves and of their local surroundings, for example to evaluate heat transport at unprecedented small scales. In this work, we demonstrated that KLu(WO4)2:Ho3+,Tm3+ nanoparticles are able to combine controllable heat release and upconversion thermometry permitting to estimate its thermal resistance (in air), a key parameter to model the heat transfer at the nanoscale.
Collapse
Affiliation(s)
- O A Savchuk
- Universitat Rovira i Virgili, Departament Quimica Fisica i Inorganica, Fisica i Cristal·lografia de Materials i Nanomaterials (FiCMA-FiCNA)-EMaS, Campus Sescelades, E-43007, Tarragona, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Trejgis K, Marciniak L. The influence of manganese concentration on the sensitivity of bandshape and lifetime luminescent thermometers based on Y3Al5O12:Mn3+,Mn4+,Nd3+ nanocrystals. Phys Chem Chem Phys 2018; 20:9574-9581. [DOI: 10.1039/c8cp00558c] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Luminescent thermometers based on transition metal and lanthanide ion codoped nanocrystals have become a group of non-contact thermometers which are gaining importance due to their high sensitivity upon temperature changes.
Collapse
Affiliation(s)
- K. Trejgis
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wroclaw
- Poland
| | - L. Marciniak
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wroclaw
- Poland
| |
Collapse
|
46
|
Wan Y, Xia T, Cui Y, Yang Y, Qian G. A Two-Photon Luminescent Dye-Loaded Metal-Organic Framework for Physiological Temperature Sensing within Biological Windows. Chempluschem 2017; 82:1320-1325. [DOI: 10.1002/cplu.201700438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Yating Wan
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Tifeng Xia
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Yu Yang
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials; Cyrus Tang Center for Sensor Materials and Applications; School of Materials Science and Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
47
|
Liu B, Li C, Yang P, Hou Z, Lin J. 808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605434. [PMID: 28295673 DOI: 10.1002/adma.201605434] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/10/2016] [Indexed: 06/06/2023]
Abstract
808 nm-light-excited lanthanide (Ln3+ )-doped nanoparticles (LnNPs) hold great promise for a wide range of applications, including bioimaging diagnosis and anticancer therapy. This is due to their unique properties, including their minimized overheating effect, improved penetration depth, relatively high quantum yields, and other common features of LnNPs. In this review, the progress of 808 nm-excited LnNPs is reported, including their i) luminescence mechanism, ii) luminescence enhancement, iii) color tuning, iv) diagnostic and v) therapeutic applications. Finally, the future outlook and challenges of 808 nm-excited LnNPs are presented.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunxia Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
48
|
|
49
|
Santos HDA, Ruiz D, Lifante G, Jacinto C, Juarez BH, Jaque D. Time resolved spectroscopy of infrared emitting Ag 2S nanocrystals for subcutaneous thermometry. NANOSCALE 2017; 9:2505-2513. [PMID: 28150830 DOI: 10.1039/c6nr08534b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a systematic investigation on the temperature dependence of fluorescence decay dynamics of infrared emitting colloidal Ag2S nanocrystals (NCs) with different surface coatings. The drastic lifetime reduction in the biological temperature range (20-50 °C) makes Ag2S NCs outstanding candidates for high sensitivity subcutaneous lifetime-based thermal sensing in the second biological window (1000-1400 nm). Indeed, the lifetime thermal sensitivity of Ag2S NCs has been found to be as large as 3-4% °C-1 at an operating wavelength of 1250 nm. Their application for lifetime-based luminescence nanothermometry has been demonstrated through simple ex vivo experiments specially designed to elucidate the magnitude of subcutaneous thermal gradients. Experimental data were found to be in excellent agreement with numerical simulations.
Collapse
Affiliation(s)
- H D A Santos
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - D Ruiz
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - G Lifante
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - C Jacinto
- Grupo de Fotônica e Fluidos Complexos, Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil.
| | - B H Juarez
- IMDEA Nanoscience, Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain and Applied Physical-Chemistry Department, Faculty of Science, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - D Jaque
- Fluorescence Imaging Group, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| |
Collapse
|
50
|
Zhao L, Cai J, Hu F, Li X, Cao Z, Wei X, Chen Y, Yin M, Duan CK. Optical thermometry based on thermal population of low-lying levels of Eu3+ in Ca2.94Eu0.04Sc2Si3O12. RSC Adv 2017. [DOI: 10.1039/c6ra28431k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Non-contact optical thermometry using rare-earth materials has attracted a lot of attention due to its realization of non-invasive and real-time temperature determination.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Jiajia Cai
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Fangfang Hu
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Xinyue Li
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Zhongmin Cao
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Xiantao Wei
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Yonghu Chen
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Min Yin
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| | - Chang-Kui Duan
- Key Laboratory of Strongly Coupled Quantum Matter Physics
- Chinese Academy of Sciences
- School of Physical Sciences
- University of Science and Technology of China
- Hefei
| |
Collapse
|