1
|
Watanabe C, Zhong J, Yamashita S, Kondo Y, Masaki C, Hosokawa R, Shibata Y. Mechanical insights into jawbone characteristics under chronic kidney disease: A comprehensive nanoindentation approach. J Mech Behav Biomed Mater 2024; 154:106506. [PMID: 38518511 DOI: 10.1016/j.jmbbm.2024.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The mechanical properties of the jawbone play a critical role in determining the successful integration of dental prostheses. Chronic kidney disease (CKD) has been identified to abnormally accelerate bone turnover rates. However, the impact of CKD on the mechanical characteristics of the jawbone has not been extensively studied. This study sought to evaluate the time-dependent viscoelastic behaviors of rat jawbones, particularly in the scenarios both with and without CKD. We hypothesized that CKD might compromise the bone's innate toughening mechanisms, potentially owing to the time-dependent viscoelasticity of the bone matrix proteins. The maxillary and mandibular bones of Wistar rats were subjected to nanoindentation and Raman micro-spectroscopy. Load-hold-displacement curves from the cortical regions were obtained via nanoindentation and were mathematically characterized using a suitable viscoelastic constitutive model. Raman micro-spectroscopy was employed to identify nuanced vibrational changes in local molecular structures induced by CKD. The time course of indenter penetration onto cortical bones during the holding stage (creep behavior) can be mathematically represented by a series arrangement of the Kelvin-Voigt bodies. This configuration dictates the overall viscoelastic response observed during nanoindentation tests. The CKD model exhibited a reduced extent of viscoelastic contributions, especially during the initial ramp loading phase in both the maxillary and mandibular cortical bones. The generalized Kelvin-Voigt model comprises 2 K-Voigt elements that signify an immediate short retardation time (τ1) and a subsequent prolonged retardation time (τ2), respectively. Notably, the mandibular CKD model led to an increase in the delayed τ2 alongside an increase in non-enzymatic collagen cross-linking. These suggest that, over time, CKD diminishes the bone's capability for supplementary energy absorption and dimensional recovery, thus heightening their susceptibility to fractures.
Collapse
Affiliation(s)
- Chie Watanabe
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan.
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Sotaro Yamashita
- Division of Oral Reconstruction and Rehabilitation, Kyusyu Dental University, Kitakyushu, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyusyu Dental University, Kitakyushu, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyusyu Dental University, Kitakyushu, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyusyu Dental University, Kitakyushu, Japan
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
2
|
Hasegawa M, Tanaka R, Zhong J, Kobayashi M, Manabe A, Shibata Y. Deciphering load attenuation mechanisms of the dentin-enamel junction: Insights from a viscoelastic constitutive model. Acta Biomater 2023; 171:193-201. [PMID: 37669711 DOI: 10.1016/j.actbio.2023.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
A considerable material discontinuity between the enamel and dentin might jeopardize the tooth's mechanical durability over time without the attenuation of the dentin-enamel junction (DEJ). However, the critical loading transmission mechanism at the DEJ remains understudied. This study aimed to define the extent and effective width of the DEJ, along with its mechanical competence. The presence of DEJ interphase layer was identified using a motif analysis based on the ion beam-transmission electron microscopy coupled with nanoindentation modulus mapping. For each region, nanoindentation load-displacement curves were recorded and mathematically analyzed using an appropriate viscoelastic constitutive model. The time-course of indenter penetration (creep) behavior of the tooth tissues can be mathematically approximated by the Kelvin-Voigt model in series, which determined the visco-contribution to the overall mechanical responses. Therefore, the elastic-plastic contribution can be distinguished from the overall mechanical responses of the tooth after subtracting the visco-contributions. During the loading period, the enamel behavior was dominated by elastic-plastic responses, while both the dentin and DEJ showed pronounced viscoelastic responses. The instantaneous modulus of the DEJ, which was measured by eliminating viscoelastic behavior from the raw load-displacement curve, was almost double that of the dentin. The DEJ was stiffer than the dentin, but it exhibited large viscoelastic motion even at the initial loading stage. This study revealed that the load attenuation competence of the DEJ, which involves extra energy expenditure, is mainly associated with its viscoelasticity. The mathematical analysis proposed here, performed on the nanoindentation creep behavior, could potentially augment the existing knowledge on hard-tissue biomechanics. STATEMENT OF SIGNIFICANCE: In this study, we undertake a rigorous mechanical characterization of the dentin-enamel junction (DEJ) using an advanced nanoindentation technique coupled with a pertinent viscoelastic constitutive model. Our approach unveils the substantial viscoelastic contribution of the DEJ during the initial indentation loading phase and offers an elaborate delineation of the DEJ interphase layer through sophisticated image analysis. These insights significantly augment our understanding of tooth durability. Importantly, our innovative mathematical analysis of creep behavior introduces a novel approach with profound implications for future research in the expansive field of hard-tissue biomechanics. The pioneering methodologies and findings presented in this work hold substantial potential to invigorate progress in biomaterials research and fuel further explorations into the functionality of biological tissues.
Collapse
Affiliation(s)
- Masataka Hasegawa
- Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University Graduate School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Reina Tanaka
- Department of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney NSW, 2006, Australia
| | - Mikihiro Kobayashi
- Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Atsufumi Manabe
- Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Zhong J, Shibata Y, Wu C, Watanabe C, Chen J, Zheng K, Hu J, Swain MV, Li Q. Functional non-uniformity of periodontal ligaments tunes mechanobiological stimuli across soft- and hard-tissue interfaces. Acta Biomater 2023; 170:240-249. [PMID: 37634832 DOI: 10.1016/j.actbio.2023.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The bone-periodontal ligament-tooth (BPT) complex is a unique mechanosensing soft-/hard-tissue interface, which governs the most rapid bony homeostasis in the body responding to external loadings. While the correlation between such loading and alveolar bone remodelling has been widely recognised, it has remained challenging to investigate the transmitted mechanobiological stimuli across such embedded soft-/hard-tissue interfaces of the BPT complex. Here, we propose a framework combining three distinct bioengineering techniques (i, ii, and iii below) to elucidate the innate functional non-uniformity of the PDL in tuning mechanical stimuli to the surrounding alveolar bone. The biphasic PDL mechanical properties measured via nanoindentation, namely the elastic moduli of fibres and ground substance at the sub-tissue level (i), were used as the input parameters in an image-based constitutive modelling framework for finite element simulation (ii). In tandem with U-net deep learning, the Gaussian mixture method enabled the comparison of 5195 possible pseudo-microstructures versus the innate non-uniformity of the PDL (iii). We found that the balance between hydrostatic pressure in PDL and the strain energy in the alveolar bone was maintained within a specific physiological range. The innate PDL microstructure ensures the transduction of favourable mechanobiological stimuli, thereby governing alveolar bone homeostasis. Our outcomes expand current knowledge of the PDL's mechanobiological roles and the proposed framework can be adopted to a broad range of similar soft-/hard- tissue interfaces, which may impact future tissue engineering, regenerative medicine, and evaluating therapeutic strategies. STATEMENT OF SIGNIFICANCE: A combination of cutting-edge technologies, including dynamic nanomechanical testing, high-resolution image-based modelling and machine learning facilitated computing, was used to elucidate the association between the microstructural non-uniformity and biomechanical competence of periodontal ligaments (PDLs). The innate PDL fibre network regulates mechanobiological stimuli, which govern alveolar bone remodelling, in different tissues across the bone-PDL-tooth (BPT) interfaces. These mechanobiological stimuli within the BPT are tuned within a physiological range by the non-uniform microstructure of PDLs, ensuring functional tissue homeostasis. The proposed framework in this study is also applicable for investigating the structure-function relationship in broader types of fibrous soft-/hard- tissue interfaces.
Collapse
Affiliation(s)
- Jingxiao Zhong
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yo Shibata
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Chi Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chie Watanabe
- Department of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Junning Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Keke Zheng
- Institute for Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Jingrui Hu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael V Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Itose M, Suzawa T, Shibata Y, Ohba S, Ishikawa K, Inagaki K, Shirota T, Kamijo R. Knee meniscus regeneration using autogenous injection of uncultured adipose tissue-derived regenerative cells. Regen Ther 2022; 21:398-405. [PMID: 36196448 PMCID: PMC9513218 DOI: 10.1016/j.reth.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction The low healing potential of mature menisci necessitates traditional surgical removal (meniscectomy) to eliminate acute or chronic degenerative tears. However, removal of meniscal tissue is main factor causing osteoarthritis. Adipose tissue-derived regenerative cells (ADRCs), a heterogeneous cell population that includes multipotent adipose-derived stem cells and other progenitor cells, were easily isolated in large amounts from autologous adipose tissue, and same-day processing without culture or expansion was possible. This study investigated the regenerative potential of autologous ADRCs for use in meniscus defects. Methods In 10- to 12-week-old male SD rat partial meniscectomy model, an atelocollagen sponge scaffold without or with ADRCs (5.0 × 105 cells) was injected into each meniscus defect. Reconstructed menisci were subjected to histologic, and dynamic mechanical analyses. Results After 12 weeks, areas of regenerated meniscal tissue in the atelocollagen sponge scaffold in rats with ADRCs (64.54 ± 0.52%, P < 0.05, n = 10) were larger than in those without injection (57.96 ± 0.45%). ADRCs were shown capable of differentiating chondrocyte-like cells and meniscal tissue components such as type II collagen. Higher elastic moduli and lower fluid permeability of regenerated meniscal tissue demonstrated a favorable structure-function relationship required for native menisci, most likely in association with micron-scale porosity, with the lowest level for tissue integrity possibly reproducible. Conclusions This is the first report of meniscus regeneration induced by injection of ADRCs. The results indicate that ADRCs will be useful in future clinical cell-based therapy strategies, including as a cell source for reconstruction of damaged knee menisci.
Collapse
Affiliation(s)
- Masakatsu Itose
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Corresponding author. Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, 142-8555 Tokyo, Japan. Tel: +81-3-3784-8163; Fax: +81-3-3784-5555
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, School of Dentistry, Showa University, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, School of Medicine, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
5
|
Zheng L, Huang X, Li C, Li P, Lin Z, Huang S. 3D printed trabeculae conditionally reproduce the mechanical properties of the actual trabeculae - A preliminary study. Heliyon 2022; 8:e12101. [PMID: 36544825 PMCID: PMC9761705 DOI: 10.1016/j.heliyon.2022.e12101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing has been used to fabricate synthetic trabeculae models and to test mechanical behavior that cannot be recognized in the actual sample, but the extent to which 3D printed trabeculae replicate the mechanical behavior of the actual trabeculae remains to be quantified. The aim of this study was to evaluate the accuracy of 3D printed trabeculae in reproducing the mechanical properties of the corresponding actual trabeculae. Twelve human trabecular cubes (5 × 5 × 5 mm) were scanned by micro-CT to form the trabecular 3D model. Each trabecular 3D model was scaled ×2-, ×3-, ×4- and ×5-fold and then printed twice at a layer thickness of 60 μm using poly (lactic acid) (PLA). The actual trabecular cubes and the 3D-printed trabecular cubes were first compressed under a loading rate of 1 mm/min; another replicated stack of 3D-printed trabecular cubes was compressed under a strain rate of 0.2/min. The results showed that the stiffness of the printed cubes tended to increase, while the strength tended to converge when the magnification increased under the two loading conditions. The strain rate effect was found in the printed cubes. The correlation coefficient (R2) of the mechanical properties between the printed and actual trabeculae can reach up to 0.94, especially under ×3-, ×4- and ×5-fold magnification. In conclusion, 3D printing could be a potential tool to evaluate the mechanical behavior of actual trabecular tissue in vitro and may help in the future to predict the risk of fracture and even personalize the treatment evaluation for osteoporosis and other trabecular bone pathologies.
Collapse
Affiliation(s)
- Liqin Zheng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuhong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Chihung Li
- International College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- Department of Orthopedics, The Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen, China
- Department of Orthopedics, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Ziling Lin
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang G, Li Z, Li N, Shi J, Fan H, Mao H. Mechanical properties of young mice tibia in four circumferential quadrants under nanoindentation. J Biomech 2022; 144:111350. [DOI: 10.1016/j.jbiomech.2022.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
7
|
Zhong J, Shibata Y. The structural motifs of mineralized hard tissues from nano- to mesoscale: A future perspective for material science. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:348-356. [DOI: 10.1016/j.jdsr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
|
8
|
Kawamura M, Masaki C, Shibata Y, Kondo Y, Mukaibo T, Miyazaki T, Hosokawa R. Pentosidine correlates with nanomechanical properties of human jaw bone. J Mech Behav Biomed Mater 2019; 98:20-25. [PMID: 31176091 DOI: 10.1016/j.jmbbm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Initial intimate apposition between implant fixtures and host bone at the surgical site is a critical factor for osseointegration of dental implants. The advanced glycation end products accumulated in the jaw bone could lead to potential failure of a dental implant during the initial integration stage, because of the inferior bone mechanical property associated with the abnormal collagen cross-linking at the material level. Here, we demonstrate the lowered creep deformation resistance and reduced dimensional recovery of jaw bone in line with high levels of pentosidine accumulation in the bone matrix which likely correlate with the pentosidine level in blood plasma. Peripheral blood samples and cortical bone samples at the surgical site were obtained from patients scheduled for dental implants in the mandible. The pentosidine levels in blood plasma were assessed. Subsequently, the relative pentosidine levels and the mechanical properties of the jaw bone were quantified by Raman microspectroscopy and nanoindentation, respectively. The nanoindentation tests revealed less creep deformation resistance and reduced time-dependent dimensional recovery of bone samples with the increase in the relative pentosidine level in the bone matrix. Higher tan δ values at the various frequencies during the dynamic indentation tests also suggested that viscoelasticity is associated with the relative intensity of pentosidine in the jaw bone matrix. We found a positive correlation between the pentosidine levels in blood plasma and the bone matrix, which in turn reduced the mechanical property of the jaw bone at the material level. Increased creep and reduced dimensional recovery of the jaw bone may diminish the mechanical interlocking of dental implants during the initial integration stage. Given the likely correlation between the plasma pentosidine level and the mechanical properties of bone, measurement of the plasma pentosidine level could serve as a new index to assess jaw bone matrix quality in advance of implant surgery.
Collapse
Affiliation(s)
- Michihiko Kawamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
9
|
Pienkowski D, Wood CL, Malluche HH. Young's modulus and hardness of human trabecular bone with bisphosphonate treatment durations up to 20 years. Osteoporos Int 2019; 30:277-285. [PMID: 30488274 DOI: 10.1007/s00198-018-4760-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
UNLABELLED Bone modulus from patients with osteoporosis treated with bisphosphonates for 1 to 20 years was analyzed. Modulus increases during the first 6 years of treatment and remains unchanged thereafter. INTRODUCTION Bisphosphonates are widely used for treating osteoporosis, but the relationship between treatment duration and bone quality is unclear. Since material properties partially determine bone quality, the present study quantified the relationship between human bone modulus and hardness with bisphosphonate treatment duration. METHODS Iliac crest bone samples from a consecutive case series of 86 osteoporotic Caucasian women continuously treated with oral bisphosphonates for 1.1-20 years were histologically evaluated to assess bone turnover and then tested using nanoindentation. Young's modulus and hardness were measured and related to bisphosphonate treatment duration by statistical modeling. RESULTS All bone samples had low bone turnover. Statistical models showed that with increasing bisphosphonate treatment duration, modulus and hardness increased, peaked, and plateaued. These models used quadratic terms to model modulus increases from 1 to 6 years of bisphosphonate treatment and linear terms to model modulus plateaus from 6 to 20 years of treatment. The treatment duration at which the quadratic-linear transition (join point) occurred also depended upon trabecular location. Hardness increased and peaked at 12.4 years of treatment; it remained constant for the next 7.6 years of treatment and was insensitive to trabecular location. CONCLUSIONS Bone modulus increases with bisphosphonate treatment durations up to 6 years, no additional modulus increases occurred after 6 years of treatment. Although hardness increased, peaked at 12.4 years and remained constant for the next 7.6 years of BP treatment, the clinical relevance of hardness remains unclear.
Collapse
Affiliation(s)
- D Pienkowski
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - C L Wood
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - H H Malluche
- Division of Nephrology, Bone & Mineral Metabolism, Department of Medicine, University of Kentucky Chandler Medical Center, 800 Rose Street, MN-564, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
10
|
Nanomechanical characterization of time-dependent deformation/recovery on human dentin caused by radiation-induced glycation. J Mech Behav Biomed Mater 2019; 90:248-255. [DOI: 10.1016/j.jmbbm.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
11
|
Exceptional contact elasticity of human enamel in nanoindentation test. Dent Mater 2019; 35:87-97. [DOI: 10.1016/j.dental.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
|
12
|
Zhou J, Shibata Y, Tanaka R, Zhang Z, Zheng K, Li Q, Ikeda S, Gao P, Miyazaki T. Quantitative/qualitative analysis of adhesive-dentin interface in the presence of 10-methacryloyloxydecyl dihydrogen phosphate. J Mech Behav Biomed Mater 2018; 92:71-78. [PMID: 30660030 DOI: 10.1016/j.jmbbm.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 11/20/2022]
Abstract
Dental adhesive provides effective retention of filling materials via adhesive-dentin hybridization. The use of co-monomers, such as 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), is thought to be crucial for hybridization owing to their ionic-binding to calcium and co-polymerization in the polymerizable adhesives. Optimal hybridization partly depends on the mechanical properties of polymerized adhesives, which are likely to be proportional to the degree of conversion ratio. This study assessed the correlation between polymerization quality and mechanical properties at the adhesive-dentin interfaces in the presence or absence of 10-MDP. In situ Raman microspectroscopy and nanoindentation tests were used concurrently to quantify the degree of conversion ratio and dynamic mechanical properties across the adhesive-dentin interfaces. Despite the excellent diffusion and apparent higher degree of co-polymerization, 10-MDP reduced the elastic modulus of the interface. The higher viscoelastic properties of the adhesive are suggestive of poor polymerization, namely polymerization linearity related to the long carboxyl chain of 10-MDP. Such reduced mechanical integrity of hybridization could also be associated with the inhibition of nano-layering between 10-MDP and mineralized tissue in the presence of hydroxyethyl methacrylate (HEMA). This potential drawback of HEMA necessitates further qualitative/quantitative characterization of adhesive-dentin hybridization using a HEMA-free/low concentration experimental 10-MDP monomer, which theoretically possesses superior chemical bonding potential to the current HEMA-rich protocol.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Zhongpu Zhang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Keke Zheng
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sachiko Ikeda
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ping Gao
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
13
|
Nautiyal P, Alam F, Balani K, Agarwal A. The Role of Nanomechanics in Healthcare. Adv Healthc Mater 2018; 7. [PMID: 29193838 DOI: 10.1002/adhm.201700793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Indexed: 12/21/2022]
Abstract
Nanomechanics has played a vital role in pushing our capability to detect, probe, and manipulate the biological species, such as proteins, cells, and tissues, paving way to a deeper knowledge and superior strategies for healthcare. Nanomechanical characterization techniques, such as atomic force microscopy, nanoindentation, nanotribology, optical tweezers, and other hybrid techniques have been utilized to understand the mechanics and kinetics of biospecies. Investigation of the mechanics of cells and tissues has provided critical information about mechanical characteristics of host body environments. This information has been utilized for developing biomimetic materials and structures for tissue engineering and artificial implants. This review summarizes nanomechanical characterization techniques and their potential applications in healthcare research. The principles and examples of label-free detection of cancers and myocardial infarction by nanomechanical cantilevers are discussed. The vital importance of nanomechanics in regenerative medicine is highlighted from the perspective of material selection and design for developing biocompatible scaffolds. This review interconnects the advancements made in fundamental materials science research and biomedical technology, and therefore provides scientific insight that is of common interest to the researchers working in different disciplines of healthcare science and technology.
Collapse
Affiliation(s)
- Pranjal Nautiyal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| | - Fahad Alam
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Kantesh Balani
- Biomaterials Processing and Characterization Laboratory Department of Materials Science and Engineering Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Arvind Agarwal
- Nanomechanics and Nanotribology Laboratory Florida International University 10555 West Flagler Street Miami FL 33174 USA
| |
Collapse
|
14
|
Rodriguez R, Yoshimura K, Shibata Y, Miyamoto Y, Tanaka R, Uyama R, Sasa K, Suzuki D, Miyazaki T, Kamijo R. Nanoindentation time-dependent deformation/recovery suggestive of methylglyoxal induced glycation in calcified nodules. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2545-2553. [PMID: 28754466 DOI: 10.1016/j.nano.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
Although empirical findings have indicated increase in bone fracture risk in type 2 diabetes patients, that has yet to be proven by results obtained at the material level. Here, we report evidence showing nanoscale time-dependent deformation/recovery of in vitro calcified nodules mimicking bone turnover in type 2 diabetes in respect to methylglyoxal (MG)-induced glycation. Nanoindentation test results revealed that calcified nodules cultured with MG did not show adequate dimensional recovery, despite a large creep rate during constant load indentation testing. This lesser recovery is likely based on the linear matrix polymerization network formed by advanced glycation end products (AGEs) as a secondary product of MG. Since elevated serum MG and abnormal bone turnover related to the amount of AGEs are observed in cases of type 2 diabetes, this time-dependent behavior may be one of the factors of the bone fracture mechanism at the material level in affected patients.
Collapse
Affiliation(s)
- Reena Rodriguez
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Kentaro Yoshimura
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Reina Tanaka
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Uyama
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Dai Suzuki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Takashi Miyazaki
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
15
|
Abstract
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
16
|
Ganeko K, Masaki C, Shibata Y, Mukaibo T, Kondo Y, Nakamoto T, Miyazaki T, Hosokawa R. Bone Aging by Advanced Glycation End Products. J Dent Res 2015; 94:1684-90. [DOI: 10.1177/0022034515602214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The quality and quantity of mandibular bone are essential prerequisites for osseointegrated implants. Only the Hounsfield unit on preoperative computed tomography is currently used as a clinical index. Nevertheless, a considerable mismatch occurs between bone quality and the Hounsfield unit. Loss of bone toughness during aging has been accepted based on empirical evidence, but this concept is unlikely evidence based at the level of mechanical properties. Nonenzymatic bone matrix cross-links associated with advanced glycation end products predominate as a consequence of aging. Thus, loss of tissue integrity could diminish the bone toughening mechanism. Here, we demonstrate an impaired bone toughening mechanism caused by mimicking aging in rabbits on a methionine-rich diet, which enabled an enhanced nonenzymatically cross-linked bone matrix. A 3-point bending test revealed a greater reduction in femoral fracture resistance in rabbits on a methionine-rich diet, despite higher maximum and normalized breaking forces (287.3 N and 88.1%, respectively), than in rabbits on a normal diet (262.2 N and 79.7%, respectively). In situ nanoindentation on mandibular cortical bone obtained from rabbits on a methionine-rich diet did not enable strain rate–dependent stiffening and consequent large-dimensional recovery during rapid loading following constant displacement after a rapid-load indentation test as compared with those in rabbits on a normal diet. Such nanoscale structure-function relationships dictate resistance to cracking propagation at the material level and allow for the overall bone toughening mechanism to operate under large external stressors. The strain-dependent stiffening was likely associated with strain-energy transfer to the superior cross-linked bone matrix network of the normal diet, while the reduction in the enzymatically cross-linked matrix in bone samples from rabbits on a methionine-rich diet likely diminished the intrinsic bone toughening mechanism. The present study also provides a precise protocol for evaluating bone mechanical properties at the material level based on observations from a series of nanoindentation experiments.
Collapse
Affiliation(s)
- K. Ganeko
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - C. Masaki
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Y. Shibata
- Division of Biomaterials and Engineering, Department of Conservative Dentistry, Showa University School of Dentistry, Tokyo, Japan
| | - T. Mukaibo
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - Y. Kondo
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - T. Nakamoto
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| | - T. Miyazaki
- Division of Biomaterials and Engineering, Department of Conservative Dentistry, Showa University School of Dentistry, Tokyo, Japan
| | - R. Hosokawa
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
17
|
Shibata Y, Tanimoto Y, Maruyama N, Nagakura M. A review of improved fixation methods for dental implants. Part II: Biomechanical integrity at bone–implant interface. J Prosthodont Res 2015; 59:84-95. [DOI: 10.1016/j.jpor.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/01/2015] [Accepted: 01/20/2015] [Indexed: 10/23/2022]
|
18
|
Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: In situ nanoindentation assessment of dilatational bands. Biomaterials 2015; 47:62-71. [DOI: 10.1016/j.biomaterials.2015.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
|