1
|
Kozieł S, Wojtala D, Szmitka M, Kędzierski P, Bieńko D, Komarnicka UK. Insights into the binding of half-sandwich phosphino Ir(III) and Ru(II) complexes to deoxyribonucleic acid, albumin and apo-transferrin: Experimental and theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123289. [PMID: 37651843 DOI: 10.1016/j.saa.2023.123289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
A group of cytotoxic half-sandwich iridium(III) (Ir(η5-Cp*)Cl2PPh2CH2OH (IrPOH)), (Ir(η5-Cp*)Cl2P(p-OCH3Ph)2CH2OH (IrMPOH)), and ruthenium(II) (Ru(η6-p-cymene)Cl2PPh2CH2OH (RuPOH), Ru(η6-p-cymene)Cl2P(p-OCH3Ph)2CH2OH (RuMPOH)) complexes with phosphine ligands exhibit the ability to (i) slow hydrolysis which is reversed by adding a high NaCl concentration; (ii) oxidation of NADH to NAD+; (iii) induction of cytotoxicity towards various cancer cell lines. Furthermore, we found that RuPOH and RuMPOH selectively inhibit the proliferation of skin cancer cells (WM266-4) while Ir(III) complexes were found to be moderate against prostate cancer cells (DU-145). Herein, to elucidate the cytotoxic effects, we investigated the interaction of these complexes with DNA and serum proteins by gel electrophoresis, fluorescence spectroscopy, and molecular docking studies. Fluorescence spectroscopic data (calf thymus DNA: CT-DNA titration), together with analysis of DNA fragmentation (gel electrophoresis) and molecular docking provided evidence for the multimodal interaction of Ir(III) and Ru(III) complexes with DNA with predominance of intercalation and minor groove binding. All examined complexes caused single-stranded cleavage of the sugar-phosphate backbone of plasmid DNA. The affinity of the complexes for apo-transferrin (apo-Tf) and human serum albumin (HSA) was evaluated by fluorescence emission spectroscopy to calculate the binding constants which suggested a tight and reversible binding. Moreover, ruthenium complexes can mimic the binding of iron compounds to specific biomolecules such as albumin and transferrin better than iridium complexes. In silico study indicate that complexes mostly bind to (i) apo-Tf with a preference for a single binding site and/or (ii) to dock within all the four predicted binding sites of HSA with the predominance of site I which include tryptophan residues of HSA. This class of ruthenium(II) and iridium(III) complexes has unusual features worthy of further exploration in the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Sandra Kozieł
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Magdalena Szmitka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Paweł Kędzierski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Dariusz Bieńko
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| |
Collapse
|
2
|
Swaminathan S, Karvembu R. Dichloro Ru(II)- p-cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study. ACS Pharmacol Transl Sci 2023; 6:982-996. [PMID: 37470017 PMCID: PMC10353064 DOI: 10.1021/acsptsci.3c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 07/21/2023]
Abstract
The use of organometallic compounds to treat various phenotypes of cancer has attracted increased interest in recent decades. Organometallic compounds, which are transitional between conventional inorganic and organic materials, have outstanding and one-of-a-kind features that offer fresh insight into the development of inorganic medicinal chemistry. The therapeutic potential of ruthenium(II)-arene RAPTA-type compounds is being thoroughly investigated, specifically owing to the excellent antimetastatic property of the initial candidate RAPTA-C. This review gives a thorough analysis of this complex and its evolution as a potential anticancer drug candidate. The numerous mechanistic investigations of RAPTA-C are discussed, and they are connected to the macroscopic biological characteristics that have been found. The "multitargeted" complex described here target enzymes, peptides, and intracellular proteins in addition to DNA that allow it to specifically target cancer cells. Understanding these may allow researchers to find specific targets and tune a new-generation organometallic complex accordingly.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
- Center
for Computational Modeling, Chennai Institute
of Technology (CIT), Chennai 600069, India
| | - Ramasamy Karvembu
- Department
of Chemistry, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
3
|
Bobylev EO, Knol RA, Mathew S, Poole DA, Kotsogianni I, Martin NI, de Bruin B, Kros A, Reek JNH. In vivo biodistribution of kinetically stable Pt 2L 4 nanospheres that show anti-cancer activity. Chem Sci 2023; 14:6943-6952. [PMID: 37389250 PMCID: PMC10306072 DOI: 10.1039/d3sc01086d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
There is an increasing interest in the application of metal-organic cages (MOCs) in a biomedicinal context, as they can offer non-classical distribution in organisms compared to molecular substrates, while revealing novel cytotoxicity mechanisms. Unfortunately, many MOCs are not sufficiently stable under in vivo conditions, making it difficult to study their structure-activity relationships in living cells. As such, it is currently unclear whether MOC cytotoxicity stems from supramolecular features or their decomposition products. Herein, we describe the toxicity and photophysical properties of highly-stable rhodamine functionalized platinum-based Pt2L4 nanospheres as well as their building blocks under in vitro and in vivo conditions. We show that in both zebrafish and human cancer cell lines, the Pt2L4 nanospheres demonstrate reduced cytotoxicity and altered biodistribution within the body of zebrafish embryos compared to the building blocks. We anticipate that the composition-dependent biodistribution of Pt2L4 spheres together with their cytotoxic and photophysical properties provides the fundament for MOC application in cancer therapy.
Collapse
Affiliation(s)
- Eduard O Bobylev
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Renzo A Knol
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Simon Mathew
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - David A Poole
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden The Netherlands
| | - Bas de Bruin
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Alexander Kros
- Dept. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Joost N H Reek
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
4
|
Hairat S, Zaki M. Half sandwiched RutheniumII complexes: En Route towards the targeted delivery by Human Serum Albumin (HSA). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Dey N, Haynes CJE. Supramolecular Coordination Complexes as Optical Biosensors. Chempluschem 2021; 86:418-433. [PMID: 33665986 DOI: 10.1002/cplu.202100004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2021] [Indexed: 12/11/2022]
Abstract
In recent years, luminescent supramolecular coordination complexes (SCCs), including 2D-metallacycles and 3D-metallacages have been utilised for biomolecular analysis. Unlike small-molecular probes, the dimensions, size, shape, and flexibility of these complexes can easily be tuned by combining ligands designed with particular geometries, symmetries and denticity with metal ions with strong geometrical binding preferences. The well-defined cavities that result, in combination with the other non-covalent interactions that can be programmed into the ligand design, facilitate great selectivity towards guest binding. In this Review we will discuss the application of luminescent metallacycles and cages in the binding and detection of a wide range of biomolecules, such as carbohydrates, proteins, amino acids, and biogenic amines. We aim to explore the effect of the structural diversity of SCCs on the extent of biomolecular sensing, expressed in terms of sensitivity, selectivity and detection range.
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|
6
|
Continuous production of tempe-based bioactive peptides using an automated enzymatic membrane reactor. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Therrien B. Unmasking Arene Ruthenium Building Blocks. CHEM REC 2020; 21:460-468. [PMID: 33215871 DOI: 10.1002/tcr.202000128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
We have, like many others, contributed to the development and to the popularity of arene ruthenium assemblies. From early on, our research was driven by applications, mainly biological (therapeutic, drug delivery, DNA interactions, photodynamic therapy, imaging). For nearly 15 years, we have focused on the use of arene ruthenium building block as a tool to construct added-value objects. In this account, we want to give the basic reasons behind our choice, and uncover our most successful examples, with an emphasis on the foreseen applications.
Collapse
Affiliation(s)
- Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH 2000, Neuchatel, Switzerland
| |
Collapse
|
8
|
Sepehrpour H, Fu W, Sun Y, Stang PJ. Biomedically Relevant Self-Assembled Metallacycles and Metallacages. J Am Chem Soc 2019; 141:14005-14020. [PMID: 31419112 PMCID: PMC6744948 DOI: 10.1021/jacs.9b06222] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diverse metal-organic complexes (MOCs), shaped as rectangles, triangles, hexagons, prisms, and cages, can be formed by coordination between metal ions (Pt, Pd, Ru, Rh, Ir, Zn, Co, and Cd) and organic ligands, with potential applications as alternatives to conventional biomedical materials for therapeutic, sensing, and imaging purposes. MOCs have been investigated as anticancer drugs in the treatment of malignant tumors in lung, cervical, breast, colon, liver, prostate, ovarian, brain, stomach, bone, skin, mouth, thyroid, and other cancers. MOCs with one, two, and three cavities have also been investigated as drug carriers and prepared for the loading and release of different drugs. In addition, MOCs can target proteins by the shape effect and recognize sugars and DNA by electrostatic interactions, as well as estradiol by host-guest interactions, etc. This Perspective mainly covers achievements in the biomedical application of MOCs. We aim to identify some key trends in the reported MOC structures in relation to their biomedical activity and potential applications.
Collapse
Affiliation(s)
- Hajar Sepehrpour
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| | - Wenxin Fu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Sun
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| | - Peter. J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
9
|
Polynuclear ruthenium organometallic compounds induce DNA damage in human cells identified by the nucleotide excision repair factor XPC. Biosci Rep 2019; 39:BSR20190378. [PMID: 31227614 PMCID: PMC6629949 DOI: 10.1042/bsr20190378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Ruthenium organometallic compounds represent an attractive avenue in developing alternatives to platinum-based chemotherapeutic agents. While evidence has been presented indicating ruthenium-based compounds interact with isolated DNA in vitro, it is unclear what effect these compounds exert in cells. Moreover, the antibiotic efficacy of polynuclear ruthenium organometallic compounds remains uncertain. In the present study, we report that exposure to polynuclear ruthenium organometallic compounds induces recruitment of damaged DNA sensing protein Xeroderma pigmentosum Group C into chromatin-immobilized foci. Additionally, we observed one of the tested polynuclear ruthenium organometallic compounds displayed increased cytotoxicity against human cells deficient in nucleotide excision repair (NER). Taken together, these results suggest that polynuclear ruthenium organometallic compounds induce DNA damage in cells, and that cellular resistance to these compounds may be influenced by the NER DNA repair phenotype of the cells.
Collapse
|
10
|
Vardhan H, Nafady A, Al-Enizi AM, Khandker K, El-Sagher HM, Verma G, Acevedo-Duncan M, Alotaibi TM, Ma S. Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle. Molecules 2019; 24:E2284. [PMID: 31248221 PMCID: PMC6630691 DOI: 10.3390/molecules24122284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Coordination-driven self-assembly is an effective synthetic tool for the construction of spatially and electronically tunable supramolecular coordination complexes (SCCs), which are useful in various applications. Herein, we report the synthesis of a two-dimensional discrete metalla-rectangle [(η6-p-cymene)4Ru4(C6H2O4)2(2)2](CF3SO3)4 (3) by the reaction of a dinuclear half-sandwich ruthenium (II) complex [Ru2(η6-p-cymene)2(C6H2O4)Cl2] (1) and bis-pyridyl amide linker (2) in the presence of AgO3SCF3. This cationic ruthenium metalla-rectangle (3) has been isolated as its triflate salt and characterized by analytical techniques including elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy (13C-NMR), 1H-1H correlation spectroscopy (COSY), 1H-1H nuclear Overhauser effect spectroscopy (NOESY), diffusion ordered spectroscopy (DOSY), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Significantly, the 2D cationic ruthenium metalla-rectangle showed better anticancer activity towards three different cell lines (A549, Caki-1 and Lovo) as compared with the parent ruthenium complex (1) and the commercially used drug, cisplatin.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khalid Khandker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Hussein M El-Sagher
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Gaurav Verma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Tawfiq M Alotaibi
- King Abdullah City for Atomic and Renewable Energy, Riyadh 11451, Saudi Arabia.
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
11
|
Petruk G, Monti DM, Ferraro G, Pica A, D'Elia L, Pane F, Amoresano A, Furrer J, Kowalski K, Merlino A. Encapsulation of the Dinuclear Trithiolato-Bridged Arene Ruthenium Complex Diruthenium-1 in an Apoferritin Nanocage: Structure and Cytotoxicity. ChemMedChem 2019; 14:594-602. [PMID: 30674089 DOI: 10.1002/cmdc.201800805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Indexed: 12/14/2022]
Abstract
The effects of encapsulating the cytotoxic dinuclear trithiolato-bridged arene ruthenium complex [(η6 -p-MeC6 H4 iPr)2 Ru2 (μ2 -S-p-C6 H4 tBu)3 ]Cl (DiRu-1) within the apoferritin (AFt) nanocage were investigated. The DiRu-1-AFt nanocarrier was characterized by UV/Vis spectroscopy, ICP-MS, CD and X-ray crystallography. In contrast to previously reported Au- and Pt-based drug-loaded AFt carriers, we found no evidence of direct interactions between DiRu-1 and AFt. DiRu-1-AFt is cytotoxic toward immortalized murine BALB/c-3T3 fibroblasts transformed with SV40 virus (SVT2) and human epidermoid carcinoma A431 malignant cells, and exhibits moderate selectivity for these cancer cells over normal BALB/c-3T3 cells. DiRu-1-AFt triggers the production of reactive oxygen species, depolarization of mitochondrial membrane potential, and induces cell death via p53-mediated apoptosis. Comparison between our data and previous results suggests that the presence of specific interactions between a metal-based drug and AFt within the protein cage is not essential for drug encapsulation.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Andrea Pica
- EMBL, CS 90181, 71 AV des Martyrs, 38009, Grenoble (38), France
| | - Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Poland
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| |
Collapse
|
12
|
Nišavić M, Stoiljković M, Crnolatac I, Milošević M, Rilak A, Masnikosa R. Highly water-soluble ruthenium(II) terpyridine coordination compounds form stable adducts with blood-borne metal transporting proteins. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2016.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Paul LE, Therrien B, Furrer J. The complex-in-a-complex cation [Pt(acac)2⊂(p-cym)6Ru6(tpt)2(dhnq)3]6+: Its stability towards biological ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Nišavić M, Masnikosa R, Butorac A, Perica K, Rilak A, Korićanac L, Hozić A, Petković M, Cindrić M. Elucidation of the binding sites of two novel Ru(II) complexes on bovine serum albumin. J Inorg Biochem 2016; 159:89-95. [DOI: 10.1016/j.jinorgbio.2016.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
15
|
Development of a continuous membrane reactor process for enzyme-catalyzed lactulose synthesis. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Ahmedova A, Mihaylova R, Momekova D, Shestakova P, Stoykova S, Zaharieva J, Yamashina M, Momekov G, Akita M, Yoshizawa M. M2L4 coordination capsules with tunable anticancer activity upon guest encapsulation. Dalton Trans 2016; 45:13214-21. [DOI: 10.1039/c6dt01801g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guest encapsulation can modulate the cytotoxicity of anthracene-based nano-capsules and broaden their applications from metallodrugs to biocompatible delivery systems.
Collapse
Affiliation(s)
- Anife Ahmedova
- Faculty of Chemistry and Pharmacy
- University of Sofia
- Sofia 1164
- Bulgaria
| | | | - Denitsa Momekova
- Faculty of Pharmacy
- Medical University of Sofia
- Sofia 1000
- Bulgaria
| | - Pavletta Shestakova
- NMR Laboratory
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- Sofia 1113
- Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy
- University of Sofia
- Sofia 1164
- Bulgaria
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy
- University of Sofia
- Sofia 1164
- Bulgaria
| | - Masahiro Yamashina
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Georgi Momekov
- Faculty of Pharmacy
- Medical University of Sofia
- Sofia 1000
- Bulgaria
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
17
|
Paul LE, Therrien B, Furrer J. Did the presence of a guest in the cavity of an arene ruthenium metallaprism modify its reactivity towards biomolecules? J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
McNeill SM, Preston D, Lewis JEM, Robert A, Knerr-Rupp K, Graham DO, Wright JR, Giles GI, Crowley JD. Biologically active [Pd2L4](4+) quadruply-stranded helicates: stability and cytotoxicity. Dalton Trans 2015; 44:11129-36. [PMID: 25997516 DOI: 10.1039/c5dt01259g] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is emerging interest in the anti-proliferative effects of metallosupramolecular systems due to the different size and shape of these metallo-architectures compared to traditional small molecule drugs. Palladium(II)-containing systems are the most abundant class of metallosupramolecular complexes, yet their biological activity has hardly been examined. Here a small series of [Pd2(L)4](BF4)4 quadruply-stranded, dipalladium(II) architectures were screened for their cytotoxic effects against three cancer cell lines and one non-malignant line. The helicates exhibited a range of cytotoxic properties, with the most cytotoxic complex [Pd2(hextrz)4](BF4)4 possessing low micromolar IC50 values against all of the cell lines tested, while the other helicates displayed moderate or no cytotoxicity. Against the MDA-MB-231 cell line, which is resistant to platinum-based drugs, [Pd2(hextrz)4](BF4)4 was 7-fold more active than cisplatin. Preliminary mechanistic studies indicate that the [Pd2(hextrz)4](BF4)4 helicate does not induce cell death in the same way as clinically used metal complexes such as cisplatin. Rather than interacting with DNA, the helicate appears to disrupt the cell membrane. These studies represent the first biological characterisation of quadruply-stranded helicate architectures, and provide insight into the design requirements for the development of biologically active and stable palladium(II)-containing metallosupramolecular architectures.
Collapse
Affiliation(s)
- Samantha M McNeill
- Department of Pharmacology and Toxicology, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|