1
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022; 61:e202208084. [PMID: 35790063 PMCID: PMC9544770 DOI: 10.1002/anie.202208084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/24/2022]
Abstract
Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles.
Collapse
Affiliation(s)
- Lucila Navarro
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| | - Andreas F. Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM)Unter den Eichen 8712205BerlinGermany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) &Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNFCauerstraße 391058ErlangenGermany
| | - Daniel Klinger
- Institute of PharmacyFreie Universität BerlinKönigin-Luise Straße 2–414195BerlinGermany
| |
Collapse
|
2
|
Navarro L, Thünemann AF, Yokosawa T, Spiecker E, Klinger D. Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post‐Assembly Control of Colloidal Features. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucila Navarro
- Freie Universitat Berlin Biology, Chemistry, Pharmacy GERMANY
| | - Andreas F. Thünemann
- Bundesanstalt fur Materialforschung und -prufung Division 6.5 Synthesis and Scattering of Nanostructure GERMANY
| | - Tadahiro Yokosawa
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Erdmann Spiecker
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM) GERMANY
| | - Daniel Klinger
- Freie Universitat Berlin Biology, Chemistry, Pharmacy Königin-Luise-Str. 2-4 14195 Berlin GERMANY
| |
Collapse
|
3
|
Amphiphilic Janus Microspheres Prepared by Caged Photoactivatable Alkoxysilane. COATINGS 2022. [DOI: 10.3390/coatings12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple photolysis route was proposed to prepare Amphiphilic Janus Particles (AJP) based on SiO2 microspheres. The surface of SiO2 microspheres were modified by photoactive alkoxysilane, which was synthesized by dealcoholization condensation of 6-nitroveratroyloxycarbonyl and isocyanatopropyl-triethoxysilane. UV irradiation caused eater-breaking allowed for the precise control of hydrophilic modification of the hemispherical exposed particles surfaces. The component and morphology of the obtained particles were characterized by fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy, and the Janus feature was evaluated by scanning electron microscopy, transmission electron microscopy, and dispersity in the oil–water dual-phases. The following results were obtained. The AJP with 450 nm size processes the hydrophilic amino groups on one side and the hydrophobic 6-nitroveratryloxycarbonyl moieties on the other. Additionally, the AJP were located at the phase boundary between water and n-hexane, and the negative charged gold nanoparticles with 25 nm size were adsorbed only onto the side with the positive charged amino groups. The AJP have interfacial adsorption energies that can be as much as three times larger than that of homogeneous particles and thus exhibit excellent surface activities.
Collapse
|
4
|
Hoffmann JF, Roos AH, Schmitt FJ, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single-Chain Nanoparticles: Core-Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021; 60:7820-7827. [PMID: 33373475 PMCID: PMC8048794 DOI: 10.1002/anie.202015179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Single-chain nanoparticles (SCNPs) are highly versatile structures resembling proteins, able to function as catalysts or biomedical delivery systems. Based on their synthesis by single-chain collapse into nanoparticular systems, their internal structure is complex, resulting in nanosized domains preformed during the crosslinking process. In this study we present proof of such nanocompartments within SCNPs via a combination of electron paramagnetic resonance (EPR) and fluorescence spectroscopy. A novel strategy to encapsulate labels within these water dispersible SCNPs with hydrodynamic radii of ≈5 nm is presented, based on amphiphilic polymers with additional covalently bound labels, attached via the copper catalyzed azide/alkyne "click" reaction (CuAAC). A detailed profile of the interior of the SCNPs and the labels' microenvironment was obtained via electron paramagnetic resonance (EPR) experiments, followed by an assessment of their photophysical properties.
Collapse
Affiliation(s)
- Justus F Hoffmann
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
5
|
Hoffmann JF, Roos AH, Schmitt F, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus F. Hoffmann
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Andreas H. Roos
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Franz‐Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 3 06120 Halle Germany
| | - Dariush Hinderberger
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| |
Collapse
|
6
|
Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications. Catalysts 2019. [DOI: 10.3390/catal10010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Direct electron transfer (DET)-capable oxidoreductases are enzymes that have the ability to transfer/receive electrons directly to/from solid surfaces or nanomaterials, bypassing the need for an additional electron mediator. More than 100 enzymes are known to be capable of working in DET conditions; however, to this day, DET-capable enzymes have been mainly used in designing biofuel cells and biosensors. The rapid advance in (semi) conductive nanomaterial development provided new possibilities to create enzyme-nanoparticle catalysts utilizing properties of DET-capable enzymes and demonstrating catalytic processes never observed before. Briefly, such nanocatalysts combine several cathodic and anodic catalysis performing oxidoreductases into a single nanoparticle surface. Hereby, to the best of our knowledge, we present the first review concerning such nanocatalytic systems involving DET-capable oxidoreductases. We outlook the contemporary applications of DET-capable enzymes, present a principle of operation of nanocatalysts based on DET-capable oxidoreductases, provide a review of state-of-the-art (nano) catalytic systems that have been demonstrated using DET-capable oxidoreductases, and highlight common strategies and challenges that are usually associated with those type catalytic systems. Finally, we end this paper with the concluding discussion, where we present future perspectives and possible research directions.
Collapse
|
7
|
Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019; 4:100033. [PMID: 32159157 PMCID: PMC7061647 DOI: 10.1016/j.mtbio.2019.100033] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Janus particles with an anisotropic structure have emerged as a focus of intensive research due to their diverse composition and surface chemistry, which show excellent performance in various fields, especially in biomedical applications. In this review, we briefly introduce the structures, composition, and properties of Janus particles, followed by a summary of their biomedical applications. Then we review several design strategies including morphology, particle size, composition, and surface modification, that will affect the performance of Janus particles. Subsequently, we explore the synthetic methodologies of Janus particles, with an emphasis on the most prevalent synthetic method (surface nucleation and seeded growth). Following this, we highlight Janus particles in biomedical applications, especially in drug delivery, bio-imaging, and bio-sensing. Finally, we will consider the current challenges the materials face with perspectives in the future directions.
Collapse
Affiliation(s)
- H. Su
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - C.-A. Hurd Price
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - L. Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Q. Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - J. Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - K. Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
8
|
Percebom AM, Costa LHM. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Adv Colloid Interface Sci 2019; 269:256-269. [PMID: 31102800 DOI: 10.1016/j.cis.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
Almost three decades after de Gennes have introduced the term Janus for particles possessing two faces with different chemical nature, Janus particles are currently a hot topic in itself. Although de Gennes was not concerned with the size of particles, due to the advent and perspectives of nanotechnology, nanosized Janus particles have particularly received great attention. The capacity of having two antagonistic properties within the same particle has attracted interest on Janus nanoparticles for innumerous potential applications. It took some years for the studies about Janus nanoparticles to finally see great advances, mainly due to the progress in nanoparticle synthesis. What de Gennes might have not predicted (or at least he did not mention it during his speech) is that intermolecular interactions between polymers would be of immense importance to the actual achievement of Janus nanoparticles. Moreover, these interactions can also have large effects on the assembly process of amphiphilic Janus nanoparticles, which is important to form hierarchical structures and new materials at different scales. Hence, it is interesting to notice that de Gennes' contribution for the polymer field has been influencing the preparation and the controlled assembly of Janus nanoparticles. This article attempts to summarize empirical studies where noncovalent forces between polymers played a role, either on the production of Janus nanoparticles or on their assembly.
Collapse
Affiliation(s)
- Ana Maria Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil.
| | - Lais Helena Moreira Costa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, PUC-Rio, 22451-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Yadav N, Seidi F, Del Gobbo S, D'Elia V, Crespy D. Versatile functionalization of polymer nanoparticles with carbonate groups via hydroxyurethane linkages. Polym Chem 2019. [DOI: 10.1039/c9py00597h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthesis of polymer nanoparticles bearing pendant cyclic carbonate moieties is carried out to explore their potential as versatile supports for biomedical applications and catalysis.
Collapse
Affiliation(s)
- Neha Yadav
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Silvano Del Gobbo
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
10
|
One step synthesis of monodisperse thiol-ene clickable polymer microspheres and application on biological functionalization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Zhang K, Liu J, Guo Y, Li Y, Ma X, Lei Z. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:1-9. [DOI: 10.1016/j.msec.2018.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/04/2017] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
|
12
|
Al Nakeeb N, Willersinn J, Schmidt BVKJ. Self-Assembly Behavior and Biocompatible Cross-Linking of Double Hydrophilic Linear-Brush Block Copolymers. Biomacromolecules 2017; 18:3695-3705. [DOI: 10.1021/acs.biomac.7b01094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noah Al Nakeeb
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jochen Willersinn
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
13
|
|
14
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
15
|
Abarca C, Ali MM, Bowie D, Pelton RH. A simple assay for azide surface groups on clickable polymeric nanoparticles. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
García-Juan H, Nogales A, Blasco E, Martínez JC, Šics I, Ezquerra TA, Piñol M, Oriol L. Self-assembly of thermo and light responsive amphiphilic linear dendritic block copolymers. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Crespy D, Landfester K, Fickert J, Rohwerder M. Self-Healing for Anticorrosion Based on Encapsulated Healing Agents. SELF-HEALING MATERIALS 2016. [DOI: 10.1007/12_2015_342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Liu Y, Jiang K, Ma Y, Liu L, Yang W. Control of cross-linking and reactions in one-step dispersion polymerization toward particles with combined anisotropies. Polym Chem 2016. [DOI: 10.1039/c6py00218h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Particles with a combination of anisotropies in morphology, surface roughness, structure and composition are synthesized by one-step dispersion polymerization.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yuhong Ma
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
19
|
Yang L, Xu J, Han J, Shen Y, Luo Y. A Novel Method for Preparing Click-Ready Latex and Latex with Stability against High Electrolyte Concentrations. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Yingwu Luo
- The
State Key Laboratory of Chemical Engineering, Department of Chemical
and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
20
|
Li B, Wang M, Chen K, Cheng Z, Chen G, Zhang Z. Synthesis of Biofunctional Janus Particles. Macromol Rapid Commun 2015; 36:1200-4. [DOI: 10.1002/marc.201500063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/10/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Binghui Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| | - Man Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| | - Zhifeng Cheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| | - Zexin Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Collaborative Innovation Center of Suzhou Nano Science and Technologyand College of Physics; Optoelectronics and Energy; Soochow University; Suzhou 215006 China
| |
Collapse
|
21
|
Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015; 115:7240-303. [DOI: 10.1021/cr5005315] [Citation(s) in RCA: 766] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|