1
|
Salluce G, Folgar-Cameán Y, Barba-Bon A, Nikšić-Franjić I, El Anwar S, Grüner B, Lostalé-Seijo I, Nau WM, Montenegro J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angew Chem Int Ed Engl 2024; 63:e202404286. [PMID: 38712936 DOI: 10.1002/anie.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.
Collapse
Affiliation(s)
- Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Andrea Barba-Bon
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Ivana Nikšić-Franjić
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Suzan El Anwar
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Kacenauskaite L, Van Wyck SJ, Moncada Cohen M, Fayer MD. Water-in-Salt: Fast Dynamics, Structure, Thermodynamics, and Bulk Properties. J Phys Chem B 2024; 128:291-302. [PMID: 38118403 DOI: 10.1021/acs.jpcb.3c07711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Van Wyck SJ, Fayer MD. Dynamics of Concentrated Aqueous Lithium Chloride Solutions Investigated with Optical Kerr Effect Experiments. J Phys Chem B 2023; 127:3488-3495. [PMID: 37018545 DOI: 10.1021/acs.jpcb.3c01702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
We report the dynamics of concentrated lithium chloride aqueous solutions over a range of moderate to high concentrations. Concentrations (1-29 to 1-3.3 LiCl-water) were studied in which, at the highest concentrations, there are far too few water molecules to solvate the ions. The measurements were made with optically heterodyne-detected optical Kerr effect experiments, a non-resonant technique able to observe dynamics over a wide range of time scales and signal amplitudes. While the pure water decay is a biexponential, the LiCl-water decays are tetra-exponentials at all concentrations. The faster two decays arise from water dynamics, while the slower two decays reflect the dynamics of the ion-water network. The fastest decay (t1) is the same as pure water at all concentrations. The second decay (t2) is also the same as that of pure water at the lower concentrations, and then, it slows with increasing concentration. The slower dynamics (t3 and t4), which do not have counterparts in pure water, arise from ion-water complexes and, at the highest concentrations, an extended ion-water network. Comparisons are made between the concentration dependence of the observed dynamics and simulations of structural changes from the literature, which enable the assignment of dynamics to specific ion-water structures. The concentration dependences of the bulk viscosity and the ion-water network dynamics are directly correlated. The correlation provides an atomistic-level understanding of the viscosity.
Collapse
Affiliation(s)
- Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Pan Z, Huang J, Zhuang W. Protein-Ligand Binding Molecular Details Revealed by Terahertz Optical Kerr Spectroscopy: A Simulation Study. JACS AU 2021; 1:1788-1797. [PMID: 34723281 PMCID: PMC8549111 DOI: 10.1021/jacsau.1c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Picosecond fast motions and their involvement in the biochemical processes such as protein-ligand binding has engaged significant attention. Terahertz optical Kerr spectroscopy (OKE) has the superior potential to probe these fast motions directly. Application of OKE in protein-ligand binding study is, however, limited by the difficulty of quantitative atomistic interpretation, and the calculation of Kerr spectrum for entire solvated protein complex was considered not yet feasible, due to the lack of one consistent polarizable model for both configuration sampling and polarizability calculation. Here, we analyzed the biochemical relevance of OKE to the lysozyme-triacetylchitotriose binding based on the first OKE simulation using one consistent Drude polarizable model. An analytical multipole and induced dipole scheme was employed to calculate the off-diagonal Drude polarizability more efficiently and accurately. Further theoretical analysis revealed how the subtle twisting and stiffening of aromatic protein residues' spatial arrangement as well as the confinement of small water clusters between ligand and protein cavity due to the ligand binding can be examined using Kerr spectroscopy. Comparison between the signals of bound complex and that of uncorrelated protein/ligand demonstrated that binding action alone has reflection in the OKE spectrum. Our study indicated OKE as a powerful terahertz probe for protein-ligand binding chemistry and dynamics.
Collapse
Affiliation(s)
- Zhijun Pan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 35000, China
- Shenzhen
Bay Laboratory, Guangming
District, Shenzhen 518107, China
| | - Jing Huang
- Westlake
Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural
Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wei Zhuang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 35000, China
- Institute
of Urban Environment, Chinese Academy of
Sciences, XiaMen, Fujian 361021, China
| |
Collapse
|
5
|
Kohns M, Lazarou G, Kournopoulos S, Forte E, Perdomo FA, Jackson G, Adjiman CS, Galindo A. Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulphuric, and carbonic acids. Phys Chem Chem Phys 2020; 22:15248-15269. [PMID: 32609107 DOI: 10.1039/c9cp06795g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724-2749] to study aqueous solutions of nitric, sulphuric, and carbonic acids, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. We present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature.
Collapse
Affiliation(s)
- Maximilian Kohns
- Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Umadevi P, Senthilkumar L. Interaction between arginine conformers and Hofmeister halide anions. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zhao H. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2016; 91:25-50. [PMID: 26949281 PMCID: PMC4777319 DOI: 10.1002/jctb.4837] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/12/2015] [Indexed: 05/08/2023]
Abstract
There are still debates on whether the hydration of ions perturbs the water structure, and what is the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization continues being questioned. For this reason, it is suggested to use the 'specific ion effect' instead of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects on water structures, and several possible contributors to the specific ion effect of protein stability. Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in IL systems that are guided by the empirical specificity rule.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
9
|
Assaf KI, Ural MS, Pan F, Georgiev T, Simova S, Rissanen K, Gabel D, Nau WM. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin. Angew Chem Int Ed Engl 2015; 54:6852-6. [PMID: 25951349 PMCID: PMC4510780 DOI: 10.1002/anie.201412485] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Indexed: 12/29/2022]
Abstract
Dodecaborate anions of the type B12X12(2-) and B12X11Y(2-) (X=H, Cl, Br, I and Y=OH, SH, NH3(+), NR3(+)) form strong (K(a) up to 10(6) L mol(-1), for B12Br12(2-)) inclusion complexes with γ-cyclodextrin (γ-CD). The micromolar affinities reached are the highest known for this native CD. The complexation exhibits highly negative enthalpies (up to -25 kcal mol(-1)) and entropies (TΔS up to -18.4 kcal mol(-1), both for B12I12(2-)), which position these guests at the bottom end of the well-known enthalpy-entropy correlation for CDs. The high driving force can be traced back to a chaotropic effect, according to which chaotropic anions have an intrinsic affinity to hydrophobic cavities in aqueous solution. In line with this argument, salting-in effects revealed dodecaborates as superchaotropic dianions.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)
| | - Merve S Ural
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)
| | - Fangfang Pan
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box. 35, 40014 University of Jyvaskyla (Finland)
| | - Tony Georgiev
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)
| | - Svetlana Simova
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Science, 1113 Sofia (Bulgaria)
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box. 35, 40014 University of Jyvaskyla (Finland).
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany).
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany).
| |
Collapse
|
10
|
Assaf KI, Ural MS, Pan F, Georgiev T, Simova S, Rissanen K, Gabel D, Nau WM. Water Structure Recovery in Chaotropic Anion Recognition: High-Affinity Binding of Dodecaborate Clusters to γ-Cyclodextrin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412485] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Zenaidee MA, Donald WA. Extremely supercharged proteins in mass spectrometry: profiling the pH of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst 2015; 140:1894-905. [DOI: 10.1039/c4an02338b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance solutions for supercharging proteins in electrospray ionization were optimized and the origin of the strong dependence of supercharging on acid strength was investigated.
Collapse
|