1
|
Okhovatian S, Shakeri A, Huyer LD, Radisic M. Elastomeric Polyesters in Cardiovascular Tissue Engineering and Organs-on-a-Chip. Biomacromolecules 2023; 24:4511-4531. [PMID: 37639715 PMCID: PMC10915885 DOI: 10.1021/acs.biomac.3c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cardiovascular tissue constructs provide unique design requirements due to their functional responses to substrate mechanical properties and cyclic stretching behavior of cardiac tissue that requires the use of durable elastic materials. Given the diversity of polyester synthesis approaches, an opportunity exists to develop a new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. Furthermore, elastomeric polyester materials have the capability to provide tailored biomechanical synergy with native tissue and hence reduce inflammatory response in vivo and better support tissue maturation in vitro. In this review, we highlight underlying chemistry and design strategies of polyester elastomers optimized for cardiac tissue scaffolds. The major advantages of these materials such as their tunable elasticity, desirable biodegradation, and potential for incorporation of bioactive compounds are further expanded. Unique fabrication methods using polyester materials such as micromolding, 3D stamping, electrospinning, laser ablation, and 3D printing are discussed. Moreover, applications of these biomaterials in cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed challenges in the field that need further study to enable the impactful translation of soft polyesters to clinical applications.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Amid Shakeri
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
| | - Locke Davenport Huyer
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Milica Radisic
- Institute of Biomaterials Engineering; University of Toronto; Toronto; Ontario, M5S 3G9; Canada
- Toronto General Research Institute, Toronto; Ontario, M5G 2C4; Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto; Ontario, M5S 3E5; Canada
| |
Collapse
|
2
|
Ding B, Huang S, Shen K, Hou J, Gao H, Duan Y, Zhang J. Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. Carbohydr Polym 2019; 225:115230. [DOI: 10.1016/j.carbpol.2019.115230] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
3
|
Liang K, Zhou Y, Ji Y. Full biodegradable elastomeric nanocomposites fabricated by chitin nanocrystal and poly(caprolactone-diol citrate) elastomer. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519881728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chitin nanocrystal is a biocompatible and biodegradable nanofiller, with great potential in enhancing the mechanical and biological properties of polymers. Poly(caprolactone-diol citrate) is a kind of citrate-based biodegradable elastomer prepared by an additive-free melt polycondensation of polycaprolactone-diol and citric acid coupled with subsequent thermocuring. Here, a facile casting/evaporation method was utilized to prepare full biodegradable poly(caprolactone-diol citrate)/chitin nanocrystal nanocomposites, and their structure and properties were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, uniaxial tensile test, dynamic mechanical analysis, surface wettability and swelling analysis, thermogravimetric analysis, in vitro degradation, and cytocompatibility test. The results showed the chitin nanocrystals were uniformly distributed in the poly(caprolactone-diol citrate) matrix; with increasing chitin nanocrystal loading, the tensile modulus and strength significantly increased; furthermore, the incorporation of chitin nanocrystals endowed the poly(caprolactone-diol citrate) with more hydrophilicity, lower swelling in phosphate buffered saline solution, slow degradation rate, and greatly improved cytocompatibility. Thus, the chitin nanocrystal was a good bio-based nanofiller that could be used to tune the properties of poly(caprolactone-diol citrate) degradable bioelastomer.
Collapse
Affiliation(s)
- Kai Liang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yajing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
4
|
Guo Y, Liang K, Ji Y. New degradable composite elastomers of POC/PCL fabricated via in-situ copolymerization blending strategy. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.11.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zhou Y, Zhou X, Liang K, Ji Y. Degradable Bioelastomers Prepared by a Facile Melt Polycondensation of Citric Acid and Polycaprolactone-diol. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1511296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yajing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Xin Zhou
- Department of Pulmonary Medicine, The Third Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Kai Liang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, Donghua University, Shanghai, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
6
|
Fabrication, characterization and osteoblast responses of poly (octanediol citrate)/bioglass nanofiber composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Zeimaran E, Pourshahrestani S, Pingguan-Murphy B, Kong D, Naveen SV, Kamarul T, Kadri NA. Development of poly (1, 8-octanediol citrate)/chitosan blend films for tissue engineering applications. Carbohydr Polym 2017; 175:618-627. [DOI: 10.1016/j.carbpol.2017.08.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
|
8
|
Zhu L, Zhang Y, Ji Y. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:93. [PMID: 28510114 DOI: 10.1007/s10856-017-5906-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Poly(1,8-octanediol citrate) (POC) is a recently developed biodegradable crosslinked elastomer that possesses good cytocompatibility and matchable mechanical properties to soft tissues. However, the thermosetting characteristic reveals a big challenge to manufacture its porous scaffold. Herein, POC elastomer was electrospun into fiber mat using poly(L-lactic acid) (PLLA) as a spinnable carrier. The obtained POC/PLLA fiber mats were characterized by scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), uniaxial tensile test, static-water-contact-angle, thermal analysis, in vitro degradation and biocompatibility test. It was found that the fibrous structure could be formed so long as the POC pre-polymer's content was no more than 50 wt%. The presence of elastic POC component not only strengthened the fiber mats but also toughened the fiber mats. The hydrophilicity of 50/50 fiber mat significantly improved. In vitro degradation rate of POC based fiber mats was much faster than that of pure PLLA. Cyto- and histo-compatibility tests confirmed that the POC/PLLA fiber mats had good biocompatibility for potential applications in soft tissue engineering.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Material Science & Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanzheng Zhang
- Changhai Hospital of Second Military Medical University, 168 Changhai Road, Shanghai, 200233, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Material Science & Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
9
|
Zailani MZ, Ismail AF, Sheikh Abdul Kadir SH, Othman MHD, Goh PS, Hasbullah H, Abdullah MS, Ng BC, Kamal F. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes. J Biomed Mater Res A 2017; 105:1510-1520. [DOI: 10.1002/jbm.a.35986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/24/2016] [Accepted: 12/15/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Muhamad Zulhilmi Zailani
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Faculty of Medicine, Institute of Medical Molecular and Biotechnology (IMMB), Universiti Teknologi MARA (UiTM); Sungai Buloh Selangor 47000 Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia; Skudai Johor 81310 Malaysia
| | - Fatmawati Kamal
- Faculty of Medicine, Institute of Medical Molecular and Biotechnology (IMMB), Universiti Teknologi MARA (UiTM); Sungai Buloh Selangor 47000 Malaysia
| |
Collapse
|
10
|
A facile and green emulsion casting method to prepare chitin nanocrystal reinforced citrate-based bioelastomer. Carbohydr Polym 2016; 157:620-628. [PMID: 27987970 DOI: 10.1016/j.carbpol.2016.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Chitin nanocrystal (ChiNC) is a promising reinforcing nanofiller for biomedical polymers. However, its self-aggregation characteristics caused processing difficulty in developing ChiNC-based nanocomposites. Herein, a new degradable crosslinked bioelastomer, designated as poly(1,8-octanediol-co-Pluronic F127 citrate) (POFC) was synthesized by melt polycondensation of citric acid, 1,8-octanediol, and Pluronic F127. In comparison to poly(1,8-octanediol citrate) (POC), POFC pre-polymer exhibited self-emulsifying property. Once ChiNC was introduced into the emulsion, a ChiNC stabilized Pickering emulsion was formed. Coupled with a facile green emulsion casting/evaporation method, the ChiNC ultimately reinforced ChiNC/POFC nanocomposite elastomer was fabricated. The presence of F127 segments endowed POFC with better hydrophilicity and shorter degradation time relative to POC. The incorporation of ChiNC into POFC network led to highly increased tensile modulus and strength. In vitro cytotoxicity tests indicated that the ChiNC/POFC elastomer nanocomposite had a good cytocompatibility and it appeared as a potential biomaterial for tissue engineering application.
Collapse
|
11
|
Chi-Yan Li S, Sun YC, Guan Q, Naguib H. Effects of chitin nanowhiskers on the thermal, barrier, mechanical, and rheological properties of polypropylene nanocomposites. RSC Adv 2016. [DOI: 10.1039/c6ra11623j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Incorporation of chitin nanowhiskers into polypropylene shows improvements in both water barrier and mechanical properties.
Collapse
Affiliation(s)
- Sharon Chi-Yan Li
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
- Department of Materials Science and Engineering
| | - Yu-Chen Sun
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
- Department of Materials Science and Engineering
| | - Qi Guan
- BOCO Technology Inc
- Toronto
- Canada
| | - Hani Naguib
- Department of Mechanical and Industrial Engineering
- University of Toronto
- Toronto
- Canada
- Department of Materials Science and Engineering
| |
Collapse
|