1
|
Kohestanian M, Pourjavadi A, Keshavarzi N. Facile and tunable method for polymeric surface modification of magnetic nanoparticles via RAFT polymerization: preparation, characterization, and drug release properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020; 20:1431-1446. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore-560027, India
| | - Niharika Sinha
- Department of Chemistry, Gautam Buddha University, Noida, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | | |
Collapse
|
4
|
Li C, Zhang N, Chen J, Ji J, Liu X, Wang J, Zhu J, Ma Y. Temperature and pH sensitive composite for rapid and effective removal of sulfonylurea herbicides in aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113150. [PMID: 31541823 DOI: 10.1016/j.envpol.2019.113150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Excessive pesticide residues in the environment have caused more and more serious social problems. In this article, the polymer materials and graphene oxide were smoothly grafted together through surface-initiated atom-transfer radical polymerization. A temperature and pH dual-sensitive adsorbent was successfully obtained, which was used for the removal of six sulfonylurea herbicides in the aquatic environment. Experiment results showed that the adsorbent could efficiently remove the tested pesticides in aqueous solution rapidly (only 1 min). The adsorption process was in consist with the pseudo-second-order kinetics equation and Freundlich model, and the thermodynamic parameters were also calculated. Furthermore, the mechanism for removal performance was judged as n-π, π-π, hydrogen bonding, hydrophobic and electrostatic interaction verdict. Exhilaratingly, the material showed no significant toxicity to Daphnia magna on risk assessment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Nan Zhang
- The Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100125, China
| | - Jixiao Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xue Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Pourjavadi A, Kohestanian M, Streb C. pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110418. [PMID: 31924030 DOI: 10.1016/j.msec.2019.110418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023]
Abstract
Herein, a novel type of multifunctional magnetic nanoparticles with dual thermal and pH-responsive behavior was fabricated as the carrier for delivery of doxorubicin (DOX). Fe3O4@SiO2 magnetic nanoparticles, were grafted with polymer brushes consisting of poly (NIPAM-co-GMA) (PNG) chains via surface initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The polymer brushes were then modified with hydrazine groups as DOX binding sites. The prepared multifunctional magnetic nanoparticles were characterized by FT-IR, 1H NMR, XPS, TGA, DLS, VSM, GPC, TEM, and XRD analysis. The in vitro drug release of the multifunctional magnetic nanoparticles was examined at 37 °C (above LCST) and 25 °C (below LCST) in different pH media and exhibited excellent pH- and thermo-sensitive behavior. The results show that the Fe3O4@SiO2@PNG-Hy fabricated via SI-RAFT polymerization is a viable candidate material for tumor treatment studies.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Kohestanian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee, 89081 Ulm, Germany
| |
Collapse
|
6
|
Lu Z, Zhang Z, Tang Y. Conjugated Polymers-Based Thermal-Responsive Nanoparticles for Controlled Drug Delivery, Tracking, and Synergistic Photodynamic Therapy/Chemotherapy. ACS APPLIED BIO MATERIALS 2019; 2:4485-4492. [DOI: 10.1021/acsabm.9b00640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhuanning Lu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
7
|
Zhou A, Chen W, Liao L, Xie P, Zhang TC, Wu X, Feng X. Comparative adsorption of emerging contaminants in water by functional designed magnetic poly(N-isopropylacrylamide)/chitosan hydrogels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:377-387. [PMID: 30933794 DOI: 10.1016/j.scitotenv.2019.03.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
The magnetic poly(N-isopropylacrylamide)/chitosan hydrogel with interpenetrating network (IPN) structure was designed based on the functional groups of targeted emerging contaminants, represented by hydrophilic sulfamethoxazole (SMZ) and hydrophobic bisphenol A (BPA). The average particle size, specific surface area, and total pore volume of the hydrogel were turned out to be 103.7 μm, 60.70 m2/g and 0.0672 cm3/g, respectively. Adsorption results indicated that the maximum adsorption capacity occurred at the pH where SMZ was anionic and BPA was uncharged. When the adsorption temperature increased from 25 °C to 35 °C, the amount of adsorbed SMZ hardly changed, but that of BPA increased by two times. The adsorption capacity of the binary system (i.e., with both SMZ and BPA) was almost the same as that of the single system, indicating that simultaneous adsorption of SMZ and BPA was achieved. The adsorption equilibrium was reached quickly (within 5 min) for both SMZ and BPA. For adsorption isotherm, the Freundlich model fitted well for SMZ at 25, 35 and 45 °C. However, the adsorption of BPA exhibited the sigmoidally shaped isotherm at 25 °C with the Slips model fitting well, and both the Freundlich isotherm and the Slips isotherm fitted the data well at 35 °C and 45 °C, suggesting that the adsorption force was initially weak but greatly enhanced with an increase in adsorbate concentration or ambient temperature. The main adsorption mechanism was inferred to be electrostatic interactions for SMZ, and hydrophobic interactions as well as hydrogen bonding for BPA. The hydrogel adsorbent maintained favorable adsorption capacity for BPA after five adsorption-desorption cycles. These findings may provide a strategy for designing high performance adsorbents that can remove both hydrophilic and hydrophobic organic contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Aijiao Zhou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wangwei Chen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lei Liao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengchao Xie
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tian C Zhang
- Department of Civil Engineering, University of Nebraska-Lincoln, Omaha, NE 68182, USA
| | - Xumeng Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaonan Feng
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
8
|
Yang XR, Song XD, Zhu HY, Cheng CJ, Yu HR, Zhang HH. Novel Smart Polymer-Brush-Modified Magnetic Graphene Oxide for Highly Efficient Chiral Recognition and Enantioseparation of Tryptophan Enantiomers. ACS APPLIED BIO MATERIALS 2018; 1:1074-1083. [DOI: 10.1021/acsabm.8b00294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiao-Rong Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Dong Song
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Han-Yan Zhu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Chang-Jing Cheng
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Hai-Rong Yu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Huai-Hao Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
9
|
Cutrone G, Casas-Solvas JM, Vargas-Berenguel A. Cyclodextrin-Modified inorganic materials for the construction of nanocarriers. Int J Pharm 2017; 531:621-639. [DOI: 10.1016/j.ijpharm.2017.06.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023]
|
10
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 619] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Won S, Phillips DJ, Walker M, Gibson MI. Co-operative transitions of responsive-polymer coated gold nanoparticles; precision tuning and direct evidence for co-operative aggregation. J Mater Chem B 2016; 4:5673-5682. [PMID: 27746916 PMCID: PMC5038384 DOI: 10.1039/c6tb01336h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
Responsive polymers and polymer-coated nanoparticles have many potential bio-applications with the crucial parameter being the exact temperature where the transition occurs. Chemical modification of hydrophobic/hydrophilic or ligand binding sites has been widely explored as a tool for controlling this transition, but requires the synthesis of many different components to achieve precise control. This study reports an extensive investigation into the use of blending (i.e. mixing) as a powerful tool to modulate the transition temperature of poly(N-isopropylacrylamide) (PNIPAM) coated gold nanoparticles. By simply mixing two nanoparticles of different compositions, precise control over the transition temperature can be imposed. This was shown to be flexible to all possible mixing parameters (different polymers on different particles, different polymers on same particles and different sized particles with identical/different polymers). Evidence of the co-operative aggregation of differently sized nanoparticles (with different cloud points) is shown using transmission electron microscopy; particles with higher cloud points aggregate with those with lower cloud points with homo-aggregates not seen, demonstrating the co-operative behaviour. These interactions, and the opportunities for transition tuning will have implications in the rational design of responsive biomaterials.
Collapse
Affiliation(s)
- Sangho Won
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| | - Daniel J Phillips
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| | - Marc Walker
- Department of Physics , University of Warwick , Coventry , CV4 7AL , UK
| | - Matthew I Gibson
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK . ; Warwick Medical School , University of Warwick , Coventry , CV4 7AL , UK
| |
Collapse
|
12
|
Chen Y, Wang L, Yu H, Zain-Ul-Abdin, Sun R, Jing G, Tong R, Deng Z. Stimuli-responsive HBPS-g-PDMAEMA and its application as nanocarrier in loading hydrophobic molecules. Beilstein J Org Chem 2016; 12:939-49. [PMID: 27340484 PMCID: PMC4901927 DOI: 10.3762/bjoc.12.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/20/2016] [Indexed: 01/20/2023] Open
Abstract
The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene)-g-poly[2-(dimethylamino)ethyl methacrylate] (HBPS-g-PDMAEMA) was synthesized and characterized by (1)H NMR and GPC. It was observed that the star-like HBPS-g-PDMAEMA formed aggregates in aqueous solution. The influence of polymer concentration, ionic strength and pH value on the aggregates in aqueous solution was investigated by using UV-vis spectroscopy and DLS analysis. The results showed that size of aggregates was affected by a corresponding stimulus. In addition, the loading ability of HBPS-g-PDMAEMA aggregates was investigated by using pyrene or Nile red as the model guest molecules by using UV-vis and fluorescence spectroscopy. The results showed that HBPS-g-PDMAEMA aggregates were capable to encapsulate small hydrophobic molecules. These newly prepared HBPS-g-PDMAEMA nanocarriers might be used in, e.g., medicine or catalysis.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Li Wang
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zain-Ul-Abdin
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruoli Sun
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guanghui Jing
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rongbai Tong
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zheng Deng
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Song YY, Song XD, Yuan H, Cheng CJ. Thermo-responsive adsorption and separation of amino acid enantiomers using smart polymer-brush-modified magnetic nanoparticles. NEW J CHEM 2016. [DOI: 10.1039/c5nj03516c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel type of multifunctional magnetic nanoparticle with highly chiral recognition capability, excellent thermo-sensitive adsorption and decomplexation properties toward amino acid enantiomers, and recyclability was developed in this study.
Collapse
Affiliation(s)
- Ya-Ya Song
- College of Chemistry and Environment Protection Engineering
- Southwest University for Nationalities
- Chengdu
- P. R. China
| | - Xiao-Dong Song
- College of Chemistry and Environment Protection Engineering
- Southwest University for Nationalities
- Chengdu
- P. R. China
| | - Heng Yuan
- College of Chemistry and Environment Protection Engineering
- Southwest University for Nationalities
- Chengdu
- P. R. China
| | - Chang-Jing Cheng
- College of Chemistry and Environment Protection Engineering
- Southwest University for Nationalities
- Chengdu
- P. R. China
| |
Collapse
|
14
|
Zhang H, Wang H, Du K, Ma X, Wang J. Constructing nanosized CdTe nanocrystal clusters with thermo-responsive photoluminescence characteristics. RSC Adv 2015. [DOI: 10.1039/c5ra20111j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Photoluminescence clusters of CdTe nanocrystals self-assembled by PNAEAM-b-PNIPAM copolymers represent sensitive and reversible thermo-responsive properties in aqueous solutions.
Collapse
Affiliation(s)
- Hucheng Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Huili Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Kelu Du
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Xinxin Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|