1
|
Tengattini S, Bavaro T, Rinaldi F, Temporini C, Pollegioni L, Terreni M, Piubelli L. Novel tuberculosis vaccines based on TB10.4 and Ag85B: State-of-art and advocacy for good practices. Vaccine 2025; 53:126932. [PMID: 40031085 DOI: 10.1016/j.vaccine.2025.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Tuberculosis (TB) has plagued humanity in numerous devastating forms for centuries and remains a significant health challenge. Mycobacterium tuberculosis (Mtb), the bacterium responsible for TB, was the leading cause of death among infectious agents until the COVID-19 pandemic emerged. Immunization with the bacillus Calmette-Guérin (BCG) vaccine is one of the primary strategies to mitigate the risk of TB. Despite its widespread use, the current BCG vaccine has limited efficacy, particularly in adults. This review focuses on the rational design of vaccine candidates targeting the antigens TB10.4 and Ag85B. The review discusses the roles of TB10.4 and Ag85B in the virulence of Mtb and notes challenges in their production. Additionally, various protein conjugation strategies to enhance immunogenicity, including linking these antigens to glycans and adjuvants, are considered, as well as the most appropriate analytical methods for characterizing recombinant antigenic proteins and their conjugates. Finally, the associated challenges in developing a vaccine encompassing specific glycans and protein components were highlighted. We claim that using standardized procedures and detailed reporting in protein production and chemical modification can improve the reproducibility and rationalization of biological results. By adhering to these guidelines, the goal of developing an effective vaccine against TB will be best achieved.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
2
|
Zheng Z, Cheng Y, Li P, Heng Tan CS. Covalent Modification of Protein by Chemical Probe in Living Cells for Structural and Interaction Studies. Chembiochem 2025; 26:e202400715. [PMID: 39380164 DOI: 10.1002/cbic.202400715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Cellular activities are predominantly carried out by proteins that can dynamically adopt different structural conformations and differentially interact with other biomolecules according to cellular needs. Chemical probes are small molecules used to selectively interact and modulate the activities of specific proteins to study their functions such as the validation of potential drug targets. The remarkable performance of AlphaFold algorithms in the prediction of protein structures has pivoted interest toward elucidating the intracellular dynamics of protein structural conformation where covalent modification of proteins by chemical probes could be used to shed light upon. However, due to the barrier to entry by cell membrane and the general unfavorable reactive conditions of the intracellular environment, most studies using reactive chemical probes are still conducted on purified proteins and cell lysates. Nevertheless, recent progresses have been made in designing chemical probes with improved membrane permeability, stability and reactivity. This paper surveys the literature on recent advancements in membrane-permeable chemical probes and their applications with protein mass spectrometry for the intracellular studies of protein structural conformations and biomolecular interactions.
Collapse
Affiliation(s)
- Zhenxiang Zheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China PR
| | - Yuyu Cheng
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China PR
| | - Pengfei Li
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China PR
| | - Chris Soon Heng Tan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China PR
| |
Collapse
|
3
|
Bernardini R, Tengattini S, Li Z, Piubelli L, Bavaro T, Modolea AB, Mattei M, Conti P, Marini S, Zhang Y, Pollegioni L, Temporini C, Terreni M. Effect of glycosylation on the affinity of the MTB protein Ag85B for specific antibodies: towards the design of a dual-acting vaccine against tuberculosis. Biol Direct 2024; 19:11. [PMID: 38268026 PMCID: PMC10809592 DOI: 10.1186/s13062-024-00454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies. RESULTS Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis. To further test the specificity of the sugar AraMan for AraMan antibodies, we used Human Serum Albumin glycosylated with AraMan-IME and Ara3Man-IME. Our findings showed that this specific sugar was fully and specifically modified. Bio-panning experiments revealed that patients with active tuberculosis exhibited a higher antibody response to Ara3Man, a sugar found in lipoarabinomannan (LAM), which is a major component of the mycobacterial cell wall. Bio-panning with anti-LAM plates could eliminate this increased response, suggesting that the enhanced Ara3Man response was primarily driven by antibodies targeting LAM. These findings highlight the importance of Ara3Man as an immunodominant epitope in LAM and support its role in eliciting protective immunity against tuberculosis. Further studies evaluated the effects of glycosylation on the antibody affinity of recombinant Ag85B and its variants. The results indicated that rAg85B-K30R/K282R, when conjugated with Ara3Man-IME, demonstrated enhanced antibody recognition compared to unconjugated or non-glycosylated versions. CONCLUSIONS Coupling Ara3Man to rAg85B-K30R/K282R could lead to the development of effective dual-acting vaccines against tuberculosis, stimulating protective antibodies against both AraMan and Ag85B, two key tuberculosis antigens.
Collapse
Affiliation(s)
- Roberta Bernardini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy.
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy.
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy.
| | - Zhihao Li
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Anamaria Bianca Modolea
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milan, 20133, Italy
| | - Stefano Marini
- Department of Translational Medicine, University of Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Yongmin Zhang
- Parisian Institute of Molecular Chemistry, Sorbonne University, UMR CNRS 8232, 4 Place Jussieu, Paris, 75005, France
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant, 3, Insubria, Varese, 21100, Italy
| | - Caterina Temporini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
4
|
Tengattini S, Rubes D, Serra M, Piubelli L, Pollegioni L, Calleri E, Bavaro T, Massolini G, Terreni M, Temporini C. Glycovaccine Design: Optimization of Model and Antitubercular Carrier Glycosylation via Disuccinimidyl Homobifunctional Linker. Pharmaceutics 2023; 15:pharmaceutics15051321. [PMID: 37242563 DOI: 10.3390/pharmaceutics15051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates. A model protein, ribonuclease A (RNase A), was first considered to set up the conjugation strategy with mono- to tri- mannose saccharides. Through a detailed characterization of synthetized glycoconjugates, purification protocols and conjugation conditions have been revised and optimized with a dual aim: ensure high sugar-loading and avoid the presence of side reaction products. An alternative purification approach based on hydrophilic interaction liquid chromatography (HILIC) allowed the formation of glutaric acid conjugates to be avoided, and a design of experiment (DoE) approach led to optimal glycan loading. Once its suitability was proven, the developed conjugation strategy was applied to the chemical glycosylation of two recombinant antigens, native Ag85B and its variant Ag85B-dm, that are candidate carriers for the development of a novel antitubercular vaccine. Pure glycoconjugates (≥99.5%) were obtained. Altogether, the results suggest that, with an adequate protocol, conjugation via disuccinimidyl linkers can be a valuable approach to produce high sugar-loaded and well-defined glycovaccines.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
5
|
Bavaro T, Tengattini S, Rezwan R, Chiesa E, Temporini C, Dorati R, Massolini G, Conti B, Ubiali D, Terreni M. Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration. Sci Rep 2021; 11:2629. [PMID: 33514813 PMCID: PMC7846569 DOI: 10.1038/s41598-021-81905-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Exogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding. EGF was immobilized on these carriers and immobilization yield was evaluated (100% and 12%, respectively). A peptide mapping of unbound protein regions was carried out by LC-MS to take evidence of the residues involved in the immobilization and, consequently, the flexibility and surface accessibility of immobilized EGF. To assess cell proliferative activities, 10, 25, 50, and 100 ng/mL of each immobilized EGF sample were seeded on fibroblast cells and incubated for 24, 48 and 72 h. The immobilized growth factor showed significantly high cell proliferative activity at 50 and 100 ng/mL compared to control and soluble EGF. Although both of the immobilized samples show dose-dependency when seeded with high number of fibroblast cells, CNBr-agarose-EGF showed a significantly high activity at 100 ng/mL and 72 h incubation, compared to glyoxyl-agarose-EGF.
Collapse
Affiliation(s)
- Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Refaya Rezwan
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Pharmacy, ASA University Bangladesh, 23/3 Bir Uttam A.N.M Nuruzzaman Sarak, Dhaka, 1207, Bangladesh
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
6
|
Developing a Library of Mannose-Based Mono- and Disaccharides: A General Chemoenzymatic Approach to Monohydroxylated Building Blocks. Molecules 2020; 25:molecules25235764. [PMID: 33297422 PMCID: PMC7730743 DOI: 10.3390/molecules25235764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Regioselective deprotection of acetylated mannose-based mono- and disaccharides differently functionalized in anomeric position was achieved by enzymatic hydrolysis. Candida rugosa lipase (CRL) and Bacillus pumilus acetyl xylan esterase (AXE) were immobilized on octyl-Sepharose and glyoxyl-agarose, respectively. The regioselectivity of the biocatalysts was affected by the sugar structure and functionalization in anomeric position. Generally, CRL was able to catalyze regioselective deprotection of acetylated monosaccharides in C6 position. When acetylated disaccharides were used as substrates, AXE exhibited a marked preference for the C2, or C6 position when C2 was involved in the glycosidic bond. By selecting the best enzyme for each substrate in terms of activity and regioselectivity, we prepared a small library of differently monohydroxylated building blocks that could be used as intermediates for the synthesis of mannosylated glycoconjugate vaccines targeting mannose receptors of antigen presenting cells.
Collapse
|
7
|
Li Z, Bavaro T, Tengattini S, Bernardini R, Mattei M, Annunziata F, Cole RB, Zheng C, Sollogoub M, Tamborini L, Terreni M, Zhang Y. Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis. Eur J Med Chem 2020; 204:112578. [PMID: 32717482 DOI: 10.1016/j.ejmech.2020.112578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 10/23/2022]
Abstract
Mycobacteria infection resulting in tuberculosis (TB) is one of the top ten leading causes of death worldwide in 2018, and lipoarabinomannan (LAM) has been confirmed to be the most important antigenic polysaccharide on the TB cell surface. In this study, a convenient synthetic method has been developed for synthesizing three branched oligosaccharides derived from LAM, in which a core building block was prepared by enzymatic hydrolysis in flow chemistry with excellent yield. After several steps of glycosylations, the obtained oligosaccharides were conjugated with recombinant human serum albumin (rHSA) and the ex-vivo ELISA tests were performed using serum obtained from several TB-infected patients, in order to evaluate the affinity of the glycoconjugate products for the human LAM-antibodies. The evaluation results are positive, especially compound 21 that exhibited excellent activity which could be considered as a lead compound for the future development of a new glycoconjugated vaccine against TB.
Collapse
Affiliation(s)
- Zhihao Li
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Teodora Bavaro
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Sara Tengattini
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Roberta Bernardini
- Italy Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Mattei
- Italy Centro Servizi Interdipartimentale - STA, University of Rome "Tor Vergata", Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Richard B Cole
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Changping Zheng
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133, Milan, Italy
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
8
|
A Concise Synthesis of Oligosaccharides Derived From Lipoarabinomannan (LAM) with Glycosyl Donors Having a Nonparticipating Group at C2. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Apel C, Kasper MA, Stieger CE, Hackenberger CPR, Christmann M. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Org Lett 2019; 21:10043-10047. [DOI: 10.1021/acs.orglett.9b03982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Caroline Apel
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| | - Marc-André Kasper
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian E. Stieger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Chemistry Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
10
|
Developing a Novel Enzyme Immobilization Process by Activation of Epoxy Carriers with Glucosamine for Pharmaceutical and Food Applications. Catalysts 2019. [DOI: 10.3390/catal9100843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this paper, we describe the development of an efficient enzyme immobilization procedure based on the activation of epoxy carriers with glucosamine. This approach aims at both creating a hydrophilic microenvironment surrounding the biocatalyst and introducing a spacer bearing an aldehyde group for covalent attachment. First, the immobilization study was carried out using penicillin G acylase (PGA) from Escherichia coli as a model enzyme. PGA immobilized on glucosamine activated supports has been compared with enzyme derivatives obtained by direct immobilization on the same non-modified carriers, in the synthesis of different 3′-functionalized cephalosporins. The derivatives prepared by immobilization of PGA on the glucosamine-carriers performed better than those prepared using the unmodified carriers (i.e., 90% versus 79% cefazolin conversion). The same immobilization method has been then applied to the immobilization of two other hydrolases (neutral protease from Bacillus subtilis, PN, and bromelain from pineapple stem, BR) and one transferase (γ-glutamyl transpeptidase from Bacillus subtilis, GGT). Immobilized PN and BR have been exploited in the synthesis of modified nucleosides and in a bench-scale packed-bed reactor for the protein stabilization of a Sauvignon blanc wine, respectively. In addition, in these cases, the new enzyme derivatives provided improved results compared to those previously described.
Collapse
|
11
|
Chemoenzymatic Synthesis of Glycoconjugates Mediated by Regioselective Enzymatic Hydrolysis of Acetylated 2-Amino Pyranose Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory effects on tumor cell growth and migration. Eur J Med Chem 2019; 165:107-114. [DOI: 10.1016/j.ejmech.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/19/2022]
|
13
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
14
|
Epitope and affinity determination of recombinant Mycobacterium tuberculosis Ag85B antigen towards anti-Ag85 antibodies using proteolytic affinity-mass spectrometry and biosensor analysis. Anal Bioanal Chem 2018; 411:439-448. [PMID: 30498982 DOI: 10.1007/s00216-018-1466-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB. Structural characterization of recombinant antigenic proteins from Mycobacterium tuberculosis (MTB) Ag85B (rAg85B, variants, and semi-synthetic glycoconjugates) was initially carried out. Identification of antibody epitope analyses by proteolytic affinity-mass spectrometry and surface plasmon resonance (SPR) biosensor analyses were performed in order to qualitatively identify and quantitatively characterize interaction structures of the antigens with antibodies from different sources. A commercial monoclonal antibody and polyclonal antibodies from different sources (patients with active TB, vaccinated individuals, and a healthy control) were employed to analyze antigen-antibody interactions. These combined approaches provided the identification of different assembled epitope regions on the recombinant MTB antigens, their affinity binding constants in the interactions with specific antibodies, and revealed the importance of protection from excessive glycosylation. The identified epitope peptides should constitute a suitable basis for the design of new specific target vaccines. Graphical abstract ᅟ.
Collapse
|
15
|
Bavaro T, Pinto A, Dall’Oglio F, Hernáiz MJ, Morelli CF, Zambelli P, De Micheli C, Conti P, Tamborini L, Terreni M. Flow-based biocatalysis: Application to peracetylated arabinofuranosyl-1,5-arabinofuranose synthesis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Rinaldi F, Tengattini S, Piubelli L, Bernardini R, Mangione F, Bavaro T, Paone G, Mattei M, Pollegioni L, Filice G, Temporini C, Terreni M. Rational design, preparation and characterization of recombinant Ag85B variants and their glycoconjugates with T-cell antigenic activity against Mycobacterium tuberculosis. RSC Adv 2018; 8:23171-23180. [PMID: 35540174 PMCID: PMC9081591 DOI: 10.1039/c8ra03535k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis is the deadliest infectious disease in the world. The variable efficacy of the current treatments highlights the need for more effective agents against this disease. In the past few years, we focused on the investigation of antigenic glycoconjugates starting from recombinant Ag85B (rAg85B), a potent protein antigen from Mycobacterium tuberculosis. In this paper, structural modifications were rationally designed in order to obtain a rAg85B variant protein able to maintain its immunogenicity after glycosylation. Lysine residues involved in the main T-epitope sequences (namely, K30 and K282) have been substituted with arginine to prevent their glycosylation by a lysine-specific reactive linker. The effectiveness of the mutation strategy and the detailed structure of resulting neo-glycoconjugates have been studied by intact mass spectrometry, followed by peptide and glycopeptide mapping. The effect of K30R and K282R mutations on the T-cell activity of rAg85B has also been investigated with a preliminary immunological evaluation performed by enzyme-linked immunospotting on the different variant proteins and their glycosylation products. After glycosylation, the two variant proteins with an arginine in position 30 completely retain the original T-cell activity, thus representing adequate antigenic carriers for the development of efficient glycoconjugate vaccines against tuberculosis.
Collapse
Affiliation(s)
- Francesca Rinaldi
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria Via Dunant 3 21100 Varese Italy
- The Protein Factory Research Centre, Politecnico of Milan and University of Insubria Via Mancinelli 7 20131 Milan Italy
| | - Roberta Bernardini
- Department of Biology and Animal Technology Station, University of Rome "Tor Vergata" Via Montpellier 1 00133 Rome Italy
| | - Francesca Mangione
- IRCCS San Matteo Hospital Foundation Microbiology and Virology Unit Viale Camillo Golgi 19 27100 Pavia Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Gregorino Paone
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Maurizio Mattei
- Department of Biology and Animal Technology Station, University of Rome "Tor Vergata" Via Montpellier 1 00133 Rome Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria Via Dunant 3 21100 Varese Italy
- The Protein Factory Research Centre, Politecnico of Milan and University of Insubria Via Mancinelli 7 20131 Milan Italy
| | - Gaetano Filice
- Department of Internal Medicine and Therapeutics, University of Pavia and Unit of Infectious Diseases, IRCCS San Matteo Hospital Foundation Viale Camillo Golgi 19 27100 Pavia Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia Viale Taramelli 12 27100 Pavia Italy +39-0382-422975 +39-0382-987788 ext. 7368
| |
Collapse
|
17
|
Zheng C, Qu H, Liao W, Bavaro T, Terreni M, Sollogoub M, Ding K, Zhang Y. Chemoenzymatically synthesized GM3 analogues as potential therapeutic agents to recover nervous functionality after injury by inducing neurite outgrowth. Eur J Med Chem 2018; 146:613-620. [DOI: 10.1016/j.ejmech.2018.01.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
|
18
|
Rinaldi F, Tengattini S, Calleri E, Bavaro T, Piubelli L, Pollegioni L, Massolini G, Temporini C. Application of a rapid HILIC-UV method for synthesis optimization and stability studies of immunogenic neo -glycoconjugates. J Pharm Biomed Anal 2017; 144:252-262. [DOI: 10.1016/j.jpba.2017.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/01/2017] [Accepted: 03/26/2017] [Indexed: 11/25/2022]
|
19
|
Bavaro T, Tengattini S, Piubelli L, Mangione F, Bernardini R, Monzillo V, Calarota S, Marone P, Amicosante M, Pollegioni L, Temporini C, Terreni M. Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates. Molecules 2017; 22:1081. [PMID: 28661444 PMCID: PMC6152100 DOI: 10.3390/molecules22071081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo-glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.
Collapse
Affiliation(s)
- Teodora Bavaro
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy.
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy.
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, I-21100 Varese, Italy.
- The Protein Factory, Interuniversity Centre Politecnico of Milano and University of Insubria, via Mancinelli 7, I-20131 Milano, Italy.
| | - Francesca Mangione
- Microbiology and Virology Unit, IRCCS San Matteo Hospital Foundation, viale Camillo Golgi 19, I-27100 Pavia, Italy.
| | - Roberta Bernardini
- Department of Biomedicine and Prevention and Animal Technology Station, University of Rome "Tor Vergata", via Montpellier 1, I-00133 Roma, Italy.
| | - Vincenzina Monzillo
- Microbiology and Virology Unit, IRCCS San Matteo Hospital Foundation, viale Camillo Golgi 19, I-27100 Pavia, Italy.
- Infection Disease Unit, Internal Medicine and Medical Therapy Department, University of Pavia, via Aselli 43/45, I-27100 Pavia, Italy.
| | - Sandra Calarota
- Microbiology and Virology Unit, IRCCS San Matteo Hospital Foundation, viale Camillo Golgi 19, I-27100 Pavia, Italy.
| | - Piero Marone
- Microbiology and Virology Unit, IRCCS San Matteo Hospital Foundation, viale Camillo Golgi 19, I-27100 Pavia, Italy.
| | - Massimo Amicosante
- Department of Biomedicine and Prevention and Animal Technology Station, University of Rome "Tor Vergata", via Montpellier 1, I-00133 Roma, Italy.
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, I-21100 Varese, Italy.
- The Protein Factory, Interuniversity Centre Politecnico of Milano and University of Insubria, via Mancinelli 7, I-20131 Milano, Italy.
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy.
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, via Taramelli 12, I-27100 Pavia, Italy.
| |
Collapse
|
20
|
Tengattini S, Domínguez-Vega E, Temporini C, Bavaro T, Rinaldi F, Piubelli L, Pollegioni L, Massolini G, Somsen GW. Hydrophilic interaction liquid chromatography-mass spectrometry as a new tool for the characterization of intact semi-synthetic glycoproteins. Anal Chim Acta 2017; 981:94-105. [PMID: 28693734 DOI: 10.1016/j.aca.2017.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/25/2022]
Abstract
Improved methods for detailed characterization of complex glycoproteins are required in the growing sector of biopharmaceuticals. Hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution (HR) time-of-flight mass spectrometric (TOF-MS) detection was examined for the characterization of intact neo-glycoproteins prepared by chemical conjugation of synthetic saccharides to the lysine residues of selected recombinant proteins. The separation performances of three different amide HILIC columns (TSKgel Amide-80, XBridge BEH and AdvanceBio Glycan Mapping) were tested. Water-acetonitrile gradients and volatile eluent additives have been explored. Addition of 0.05% (v/v) trifluoroacetic acid to the mobile phase appeared to be essential for achieving optimum resolution of intact glycoforms and minimal ion suppression effects. Gradient elution conditions were optimized for each protein on every column. HILIC stationary phases were evaluated for the analysis of highly heterogeneous semi-synthetic derivatives of the same protein (ribonuclease A), and in the enhanced characterization of TB10.4 and Ag85B glycoconjugates, selected antigens from Mycobacterium tuberculosis (MTB). HILIC-MS results indicated that the HILIC selectivity is predominantly governed by size of the conjugated glycans and number of glycans attached, providing efficient glycoform separation. Moreover, HILIC separation prior to HRMS detection allowed assignment of several product impurities. Additional top-down MS/MS experiments confirmed conjugation at the N-terminus of TB10.4 next to its lysine residue. Overall, the obtained results demonstrate that amide-stationary-phase based HILIC coupled to MS is highly useful for the characterization of intact neo-glycoproteins allowing assessment of the number, identity and relative abundance of glycoforms present in the semi-synthetic products.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, I-27100, Pavia, Italy; Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, I-27100, Pavia, Italy.
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, I-27100, Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, I-27100, Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, I-21100, Varese, Italy; The Protein Factory Interuniversity Centre, Politecnico of Milano, University of Insubria, Via Mancinelli 7, I-20131, Milano, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, I-21100, Varese, Italy; The Protein Factory Interuniversity Centre, Politecnico of Milano, University of Insubria, Via Mancinelli 7, I-20131, Milano, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, I-27100, Pavia, Italy
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Tengattini S, Domínguez-Vega E, Temporini C, Terreni M, Somsen GW. Monitoring antigenic protein integrity during glycoconjugate vaccine synthesis using capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 2016; 408:6123-32. [PMID: 27372716 PMCID: PMC4981626 DOI: 10.1007/s00216-016-9723-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
Abstract
A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass spectrometry (MS).
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Alexander SR, Fairbanks AJ. Direct aqueous synthesis of cyanomethyl thioglycosides from reducing sugars; ready access to reagents for protein glycosylation. Org Biomol Chem 2016; 14:6679-82. [DOI: 10.1039/c6ob01069e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unprotected carbohydrates can be directly converted into cyanooethyl thioglycosides, which in turn may be used for protein glycosylation, in a completely stereoselective manner by reaction with 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and mercaptoacetonitrile in aqueous solution.
Collapse
Affiliation(s)
| | - Antony J. Fairbanks
- Department of Chemistry
- University of Canterbury
- Christchurch 8140
- New Zealand
- Biomolecular Interaction Centre
| |
Collapse
|
23
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|