1
|
Debnath A, Mitra S, Ghosh S, Sen R. Understanding microbial biomineralization at the molecular level: recent advances. World J Microbiol Biotechnol 2024; 40:320. [PMID: 39279013 DOI: 10.1007/s11274-024-04132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Microbial biomineralization is a phenomenon involving deposition of inorganic minerals inside or around microbial cells as a direct consequence of biogeochemical cycling. The microbial metabolic processes often create environmental conditions conducive for the precipitation of silicate, carbonate or phosphate, ferrate forms of ubiquitous inorganic ions. Till date the fundamental mechanisms underpinning two of the major types of microbial biomineralization such as, microbially controlled and microbially induced remains poorly understood. While microbially-controlled mineralization (MCM) depends entirely on the genetic makeup of the cell, microbially-induced mineralization (MIM) is dependent on factors such as cell morphology, cell surface structures and extracellular polymeric substances (EPS). In recent years, the organic template-mediated nucleation of inorganic minerals has been considered as an underlying mechanism based on the principles of solid-state bioinorganic chemistry. The present review thus attempts to provide a comprehensive and critical overview on the recent progress in holistic understanding of both MCM and MIM, which involves, organic-inorganic biomolecular interactions that lead to template formation, biomineral nucleation and crystallization. Also, the operation of specific metabolic pathways and molecular operons in directing microbial biomineralization have been discussed. Unravelling these molecular mechanisms of biomineralization can help in the biomimetic synthesis of minerals for potential therapeutic applications, and facilitating the engineering of microorganisms for commercial production of biominerals.
Collapse
Affiliation(s)
- Ankita Debnath
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sayak Mitra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratit Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
2
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
3
|
Debnath A, Hazra C, Sen R. Insight into biomolecular interaction-based non-classical crystallization of bacterial biocement. Appl Microbiol Biotechnol 2023; 107:6683-6701. [PMID: 37668700 DOI: 10.1007/s00253-023-12736-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023]
Abstract
In an attempt to draw a correlation between calcium carbonate (CaCO3) precipitation and biomacromolecules such as extracellular polymeric substances and enzyme activity in biomineralizing microbe, this report aims to elucidate the ureolytic and ammonification route in Paenibacillus alkaliterrae to explore the possible role of organic biomolecule(s) present on cell surface in mediating nucleation and crystallization of biogenic CaCO3. After 168 h of biomineralization in ureolysis and ammonification, 2.2 g/l and 0.87 g/l of CaCO3 precipitates were obtained, respectively. The highest carbonic anhydrase activity (31.8 µmoles/min/ml) was evidenced in ammonification as opposed to ureolysis (24.8 µmoles/min/ml). Highest urease activity reached up to 9.26 µmoles/min/ml in ureolytic pathway. Extracellular polymeric substances such as polysaccharides and proteins were found to have a vital role not only in the nucleation and crystal growth but also in addition direct polymorphic fate of CaCO3 nanoparticles. EPS production was higher during ammonification (3.1 mg/ml) than in ureolysis (0.72 mg/ml). CaCO3 nanoparticle-associated proteins were found to be 0.82 mg/ml in ureolysis and 0.56 mg/ml in ammonification. After 30 days of biomineralization, all the polymorphic forms stabilized to calcite in ureolysis but in ammonification vaterite predominated. In our study, we showed that organic template-mediated prokaryotic biomineralization follows the non-classical nucleation and varying proportions of these organic components causes selective polymorphism of CaCO3 nanoparticles. Overall, the findings are expected to further the fundamental understanding of enzymes, EPS-driven non-classical nucleation of CaCO3, and we foresee the design of fit-for-purpose futuristic biominerals arising from such renewed understanding of biomineralization. KEY POINTS: • Organic-inorganic interface of cell surface promote crystallization of biominerals • Carbohydrate and proteins in the interface results selective polymorphism of CaCO3 • Calcite stabilized at 30 days in ureolysis, vaterite-calcite mix in ammonification.
Collapse
Affiliation(s)
- Ankita Debnath
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
4
|
Savchenko M, Sebastian V, Lopez-Lopez MT, Rodriguez-Navarro A, Alvarez De Cienfuegos L, Jimenez-Lopez C, Gavira JA. Magnetite Mineralization inside Cross-Linked Protein Crystals. CRYSTAL GROWTH & DESIGN 2023; 23:4032-4040. [PMID: 37304398 PMCID: PMC10251750 DOI: 10.1021/acs.cgd.2c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Indexed: 06/13/2023]
Abstract
Crystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process.
Collapse
Affiliation(s)
- Mariia Savchenko
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Victor Sebastian
- Department
of Chemical Engineering and Environmental Technology, Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Alejandro Rodriguez-Navarro
- Departamento
de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Luis Alvarez De Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain
| | - José Antonio Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| |
Collapse
|
5
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Zhang T, An W, Sun J, Duan F, Shao Z, Zhang F, Jiang T, Deng X, Boyer C, Gao W. N-Terminal Lysozyme Conjugation to a Cationic Polymer Enhances Antimicrobial Activity and Overcomes Antimicrobial Resistance. NANO LETTERS 2022; 22:8294-8303. [PMID: 36239583 DOI: 10.1021/acs.nanolett.2c03160] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbial resistance to antibiotics is one of the greatest global healthcare challenges. There is an urgent need to develop effective strategies to overcome antimicrobial resistance. We, herein, report photoinduced in situ growth of a cationic polymer from the N-terminus of lysozyme. The attachment of the cationic polymer improves the proteolytic and thermal stability of lysozyme. Notably, the conjugate can efficiently overcome lysozyme resistance in Gram-positive bacteria and antibiotics-resistance in Gram-negative bacteria, which may be ascribed to the synergistic interactions of lysozyme and the cationic polymer with the bacteria to disrupt their cell membranes. In a rat periodontitis model, the lysozyme-polymer conjugate not only greatly outperforms lysozyme in therapeutic efficacy but also is superior to minocycline hydrochloride, which is the gold standard for periodontitis therapy. These findings may provide an efficient strategy to dramatically enhance the antimicrobial activities of lysozyme and pave a way to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei An
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Jiawei Sun
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
- Peking University International Cancer Institute, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Fei Duan
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Peking University International Cancer Institute, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Zeyu Shao
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fan Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Peking University International Cancer Institute, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Ting Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Biomedical Engineering Department, Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
- Peking University International Cancer Institute, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| |
Collapse
|
7
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
8
|
Esmaeilnejad-Ahranjani P, Arpanaei A. pH Shock-promoted lysozyme corona for efficient pathogenic infections treatment: Effects of surface chemistry of mesoporous silica nanoparticles and loading method. Enzyme Microb Technol 2021; 154:109974. [PMID: 34933175 DOI: 10.1016/j.enzmictec.2021.109974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
The emergence of antibiotic resistant bacteria because of the antibiotics abusement was the motivation to develop the effective alternatives to traditional antibiotics. Hence, various lysozyme corona were prepared through the physical and covalent attachment of lysozyme molecules onto either the bare or carboxyl-functionalized mesoporous silica particles. The prepared samples were characterized by STEM, TGA/DTA, zeta potential, FTIR, UV-vis and CD spectroscopic methods. All the prepared lysozyme-coated particles exhibited an efficient antibacterial activity against Listeria monocytogenes, as a case study, in vitro with no cytotoxicity. The minimal inhibition concentration (MIC) of the lysozyme-physically adsorbed bare and carboxyl-functionalized mesoporous silica nanoparticles (L-MS and L-ads-CMS, respectively) and the lysozyme-covalently attached carboxyl-functionalized MS particles (L-cov-CMS) was 2, 5.3 and 1.7 folds lower than that of the free lysozyme, respectively. Additionally, for the first time, it was reported that the pretreatment of lysozyme corona of L-ads-CMS through inducing a pH-shock can lead to the enhancement of antibacterial properties thereof. This behavior was associated to the controlled release of the immobilized lysozyme molecules and their conformational stability. These natural antibacterial lysozyme-coated silica nanoparticles showing the "pH-shock enhanced activity" could be of utmost interest for design of the highly active enzyme-modified nanoparticles.
Collapse
Affiliation(s)
- Parvaneh Esmaeilnejad-Ahranjani
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box: 31975/148, Karaj, Iran
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 1417863171, Tehran, Iran; Scion, Private Bag 3020, Rotorua 3046, New Zealand.
| |
Collapse
|
9
|
Korpi A, Anaya-Plaza E, Välimäki S, Kostiainen M. Highly ordered protein cage assemblies: A toolkit for new materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1578. [PMID: 31414574 DOI: 10.1002/wnan.1578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures. These assembly processes are sensitive to the molecules used and the surrounding conditions, making it possible to tune the chemical and physical properties of the resultant material and generate multifunctional and environmentally sensitive systems. These materials have numerous potential applications, including catalysis and drug delivery. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Salla Välimäki
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Mauri Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| |
Collapse
|
10
|
Li Y, Feng L, Yan W, Hussain I, Su L, Tan B. PVP-templated highly luminescent copper nanoclusters for sensing trinitrophenol and living cell imaging. NANOSCALE 2019; 11:1286-1294. [PMID: 30603761 DOI: 10.1039/c8nr07142j] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Copper nanoclusters (CuNCs) exhibit susceptibility to oxidation in the subnanometer size range. In this work, a facile and green protocol is reported for the successful synthesis of water soluble CuNCs, with poly(vinylpyrrolidone) as a template and ascorbic acid as a mild reducing agent. The as-prepared CuNCs exhibit a green fluorescence and high quantum yield (QY = 44.67%) in water, which is the highest among the reported water soluble CuNCs. The origin of their highly luminescent nature was also investigated. In addition, the obtained CuNCs show good tolerability to high ionic strength, superior antioxidation properties, good photostability, time-stability, a large Stokes shift and ultralow cytotoxicity, laying the foundation for living cell imaging in THP-1 macrophages. A bright green fluorescence can be observed from the cells, indicating the potential practicality of CuNCs as a fluorescence marker in bioapplications. Interestingly, the as-prepared CuNCs exhibit a good selective fluorescence quenching response towards trinitrophenol over other nitro compounds. Furthermore, CuNCs were employed for sensing trinitrophenol based on the inner filter effect. A good linear relationship was obtained in the low concentration range of trinitrophenol, with a limit of detection of 3.91 × 10-7 M in aqueous medium. This result suggests the potential application of CuNCs as a probe in sensing and monitoring toxic trinitrophenol in the field of environmental security.
Collapse
Affiliation(s)
- Yulian Li
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | |
Collapse
|
11
|
Garcia-Hernandez C, Freese AK, Rodriguez-Mendez ML, Wanekaya AK. In situ synthesis, stabilization and activity of protein-modified gold nanoparticles for biological applications. Biomater Sci 2019; 7:2511-2519. [DOI: 10.1039/c9bm00129h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We demonstrate an in situ synthesis, stabilization and activity of a nanoparticle-based protein carrier platform via the Layer-by-Layer (LbL) technology.
Collapse
Affiliation(s)
- Celia Garcia-Hernandez
- Chemistry Department
- Missouri State University
- 901 S. National Ave
- USA
- Group UVASENS. Chemistry Department
| | | | | | - Adam K. Wanekaya
- Chemistry Department
- Missouri State University
- 901 S. National Ave
- USA
| |
Collapse
|
12
|
Wang L, Deng L, Liu YN. Protein-Metal-Ion Networks: A Unique Approach toward Metal Sulfide Nanoparticles Embedded In Situ in Nanocomposites. Chemistry 2018; 25:904-912. [DOI: 10.1002/chem.201802988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Liqiang Wang
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| | - Liu Deng
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- School of Material Science and Energy Engineering; Foshan University; Foshan Guangdong 528000 PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha Hunan 410083 PR China
- State Key Laboratory for Powder Metallurgy; Central South University; Changsha Hunan 410083 PR China
| |
Collapse
|
13
|
Steiert E, Radi L, Fach M, Wich PR. Protein-Based Nanoparticles for the Delivery of Enzymes with Antibacterial Activity. Macromol Rapid Commun 2018; 39:e1800186. [DOI: 10.1002/marc.201800186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Elena Steiert
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Lydia Radi
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| | - Matthias Fach
- Department of Micro and Nanotechnology; Technical University of Denmark; Produktionstorvet Building 423 2800 Lyngby Denmark
| | - Peter R. Wich
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
14
|
Han L, Liu P, Zhang H, Li F, Liu A. Phage capsid protein-directed MnO 2 nanosheets with peroxidase-like activity for spectrometric biosensing and evaluation of antioxidant behaviour. Chem Commun (Camb) 2018; 53:5216-5219. [PMID: 28443853 DOI: 10.1039/c7cc02049j] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Small molecular weight proteins (5.21 kDa) were used as bio-templates to synthesize MnO2 nanosheets (NSs). This work will open up a protein-directed avenue to synthesize 2D morphology. Further, the as-prepared MnO2 NSs showed intrinsic peroxidase-like activity and were then applied for glucose detection and evaluation of antioxidant behaviours of typical antioxidants.
Collapse
Affiliation(s)
- Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong, China.
| | | | | | | | | |
Collapse
|
15
|
Abe S, Maity B, Ueno T. Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Chem Commun (Camb) 2018; 52:6496-512. [PMID: 27032539 DOI: 10.1039/c6cc01355d] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is growing interest in the design of protein assemblies for use in materials science and bionanotechnology. Protein assemblies, such as cages and crystalline protein structures, provide confined chemical environments that allow immobilization of metal complexes, nanomaterials, and proteins by metal coordination, assembly/disassembly reactions, genetic manipulation and crystallization methods. Protein assembly composites can be used to prepare hybrid materials with catalytic, magnetic and optical properties for cellular applications due to their high stability, solubility and biocompatibility. In this feature article, we focus on the recent development of ferritin as the most promising molecular template protein cage and in vivo and in vitro engineering of protein crystals as solid protein materials with functional properties.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Basudev Maity
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechonology, Tokyo Institute of Techonology, B-55, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
16
|
Han L, Liu A. Novel Cell-Inorganic Hybrid Catalytic Interfaces with Enhanced Enzymatic Activity and Stability for Sensitive Biosensing of Paraoxon. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6894-6901. [PMID: 28199084 DOI: 10.1021/acsami.6b15992] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To improve the biosensing performance of organophosphorus hydrolase (OPH), the novel bioinorganic hybrid catalysts were facilely explored by biomineralization and cell surface display technology. During biomineralization, cobalt phosphate crystals were deposited onto the surface of OPH-fused bacteria, and the inorganic crystals at middle of cell collapsed inwardly to form the final spindle morphology because of the lowest energy principle and the mechanics principle. OPH would show the allosteric effect from "inactive" form to "active" form, and the "active" form was "fixed" when OPH was embedded into cobalt phosphate. Therefore, the activity of mineralized OPH-fused cells was greatly enhanced about 3 times in comparison with original OPH-fused cells. Additionally, the stability of the novel hybrid catalysts was also significantly improved. Further, the as-synthesized bioinorganic hybrid catalysts were applied to sensitive paraoxon biosensing, which exhibited lower limit of detection than that of the original counterpart. Thus, this hybrid biocatalytic system would provide a model to develop a wide range of biocatalysts and find a wide range of applications in industrial catalysis, analytical chemistry, and environmental engineering.
Collapse
Affiliation(s)
- Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , 700 Changcheng Road, Qingdao 266109, China
| | - Aihua Liu
- Institute for Biosensing & In-Vitro Diagnostics and College of Chemistry & Chemical Engineering, Qingdao University , 308 Ningxia Road, Qingdao 266071, China
- Joint Key Laboratory for Biosensors of Shangdong Province, Qingdao University , 308 Ningxia Road, Qingdao 266071, China
- College of Medicine, Qingdao University , Qingdao 266021, China
| |
Collapse
|
17
|
Wang S, Chen M, Wu L. One-Step Synthesis of Cagelike Hollow Silica Spheres with Large Through-Holes for Macromolecule Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33316-33325. [PMID: 27934185 DOI: 10.1021/acsami.6b11639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)-xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300-460 nm) with large through-holes (10-30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm3) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, People's Republic of China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, People's Republic of China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, People's Republic of China
| |
Collapse
|
18
|
Ye T, Li C, Su C, Ji X, Zheng J, Tinnefeld P, He Z. Enzymatic polymerization of poly(thymine) for the synthesis of copper nanoparticles with tunable size and their application in enzyme sensing. Chem Commun (Camb) 2016; 51:8644-7. [PMID: 25899921 DOI: 10.1039/c5cc01517k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A bottom-up strategy was developed for the enzyme mediated synthesis of Cu nanoparticles, which showed good sensing performance.
Collapse
Affiliation(s)
- Tai Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
20
|
Liu Y, Xiang Y, Ding D, Guo R. Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra23773h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Yinping Xiang
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Ding Ding
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Rong Guo
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
21
|
Zhang C, Guo Z, Chen G, Zeng G, Yan M, Niu Q, Liu L, Zuo Y, Huang Z, Tan Q. Green-emitting fluorescence Ag clusters: facile synthesis and sensors for Hg2+ detection. NEW J CHEM 2016. [DOI: 10.1039/c5nj02268a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bovine serum albumin directed synthesis of Ag clusters for Hg2+ detection.
Collapse
|
22
|
Cui Y, Li Z, Wang L, Liu F, Yuan Y, Wang H, Xue L, Pan J, Chen G, Chen H, Yuan L. One-step synthesis of glycoprotein mimics in vitro: improvement of protein activity, stability and application in CPP hydrolysis. J Mater Chem B 2016; 4:5437-5445. [DOI: 10.1039/c6tb01251e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycoprotein mimics produced in vitro by one-step conjugation of glycopolymer and pyrophosphatase have improved bioactivity and stability for potential biomedical applications.
Collapse
|
23
|
Couleaud P, Adan-Bermudez S, Aires A, Mejías SH, Sot B, Somoza A, Cortajarena AL. Designed Modular Proteins as Scaffolds To Stabilize Fluorescent Nanoclusters. Biomacromolecules 2015; 16:3836-44. [PMID: 26536489 DOI: 10.1021/acs.biomac.5b01147] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins have been used as templates to stabilize fluorescent metal nanoclusters thus obtaining stable fluorescent structures, and their fluorescent properties being modulated by the type of protein employed. Designed consensus tetratricopeptide repeat (CTPR) proteins are suited candidates as templates for the stabilization of metal nanoclusters due to their modular structural and functional properties. Here, we have studied the ability of CTPR proteins to stabilize fluorescent gold nanoclusters giving rise to designed functional hybrid nanostructures. First, we have investigated the influence of the number of CTPR units, as well as the presence of cysteine residues in the CTPR protein, on the fluorescent properties of the protein-stabilized gold nanoclusters. Synthetic protocols to retain the protein structure and function have been developed, since the structural and functional integrity of the protein template is critical for further applications. Finally, as a proof-of-concept, a CTPR module with specific binding capabilities has been used to stabilize gold nanoclusters with positive results. Remarkably, the protein-stabilized gold nanocluster obtained combines both the fluorescence properties of the nanoclusters and the functional properties of the protein. The fluorescence changes in nanoclusters fluorescence have been successfully used as a sensor to detect when the specific ligand was recognized by the CTPR module.
Collapse
Affiliation(s)
- Pierre Couleaud
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit , Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Antonio Aires
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sara H Mejías
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit , Campus de Cantoblanco, 28049 Madrid, Spain
| | - Begoña Sot
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit , Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alvaro Somoza
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit , Campus de Cantoblanco, 28049 Madrid, Spain
| | - Aitziber L Cortajarena
- IMDEA-Nanociencia , Campus de Cantoblanco, 28049 Madrid, Spain.,Centro Nacional de Biotecnología (CNB-CSIC) - IMDEA Nanociencia Associated Unit , Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
24
|
Hu Y, Guo W, Wei H. Protein- and Peptide-directed Approaches to Fluorescent Metal Nanoclusters. Isr J Chem 2015. [DOI: 10.1002/ijch.201400178] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|