1
|
Ravula V, Muripiti V, Kumar A, Wang LF, Kumar Vemula P, Patri SV. DOTAP Modified Formulations of Aminoacid Based Cationic Liposomes for Improved Gene Delivery and Cell Viability. ChemMedChem 2024; 19:e202400324. [PMID: 39108039 DOI: 10.1002/cmdc.202400324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Indexed: 10/22/2024]
Abstract
The liposomal systems proved remarkably useful for the delivery of genetic materials but enhancing their efficacy remains a significant challenge. While structural alterations could result in the discovery of more effective transfecting lipids, improving the efficacy of widely used lipid carriers is also crucial in order to compete with viral vectors for gene delivery. Herein, we developed formulations of commercially available lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with synthetic amino acid based cationic lipids. Two cationic lipids were synthesized using amino acids, with either cystine (CTT) or arginine (AT) in the head group. These lipids were used to formulate co-liposomal structures with different lipid compositions. The liposomal formulations were broadly categorised into two types: amino acid-based liposomes without DOTAP (CTTD and ATD) and those with DOTAP (DtATD and DtCTTD). Optimized lipid-DNA complexes of DOTAP-incorporated formulations (DtATD and DtCTTD) exhibited enhanced efficacy in transfection compared to formulations lacking DOTAP as well as commercial formulations such as DOTAP:DOPE. Notably, DtCTTD displayed superior transfection capabilities in prostate cancer (PC3) and lung cancer (A549) cell lines when compared to the widely used commercial transfection reagent, Lipofectamine. Collectively, the findings from this study suggest that DOTAP-incorporated formulations derived from amino acid-based liposomes, hold promise as effective tools for improving transfection efficacy with reduced toxicity, offering potential advancements in gene delivery applications.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Venkanna Muripiti
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
- Department of Education, Central University of Kerala, Kasarasod, 671320, Kerala, India
| | - Akash Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou 1st Road, Kaohsiung, 80708, Taiwan
| | - Praveen Kumar Vemula
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore, 560065, Karnataka, India
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology Warangal, Telangana State, 506004, India
| |
Collapse
|
2
|
Zhao Y, Ma W, Tian K, Wang Z, Fu X, Zuo Q, Qi Y, Zhang S. Sucrose ester embedded lipid carrier for DNA delivery. Eur J Pharm Biopharm 2024; 198:114269. [PMID: 38527635 DOI: 10.1016/j.ejpb.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
Sucrose esters (SEs) have great potential in the field of nucleic acid delivery due to their unique physical and chemical properties and good biosafety. However, the mechanism of the effect of SEs structure on delivery efficiency has not been studied. The liposomes containing peptide lipids and SEs were constructed, and the effects of SEs on the interaction between the liposomes and DNA were studied. The addition of SEs affects the binding rate of liposomes to DNA, and the binding rate gradually decreases with the increase of SEs' carbon chain length. SEs also affect the binding site and affinity of liposomes to DNA, promoting the aggregation of lipids to form liposomes, where DNA wraps around or compresses inside the liposomes, allowing it to compress DNA without damaging the DNA structure. COL-6, which is composed of sucrose laurate, exhibits the optimal affinity for DNA, and SE promotes the formation of ordered membrane structure and enhances membrane stability, so that COL-6 exhibits a balance between rigidity and flexibility, and thus exhibits the highest delivery efficiency of DNA among these formulations. This work provides theoretical foundations for the application of SE in gene delivery and guides for the rational design of delivery systems.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Wanting Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Kexin Tian
- College of Chemical Engineering, Dalian University of Technology, Dalian 116600, China
| | - Zhe Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xingxing Fu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qi Zuo
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney 2050, Australia.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
3
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
4
|
Cardador CM, Muehlmann LA, Coelho CM, Silva LP, Garay AV, Carvalho AMDS, Bastos IMD, Longo JPF. Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics 2023; 15:873. [PMID: 36986734 PMCID: PMC10056227 DOI: 10.3390/pharmaceutics15030873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.
Collapse
Affiliation(s)
- Camila Magalhães Cardador
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | | | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | - Luciano Paulino Silva
- Laboratório de Nanobiotecnologia (LNANO), Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70770-917, DF, Brazil
| | - Aisel Valle Garay
- Molecular Biophysics Laboratory, Department of Cell Biology, Institute of Biological Science, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | | | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| |
Collapse
|
5
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
6
|
Chen Y, Li X, Shi L, Ma P, Wang W, Wu N, Gan Y, Han X, Huang S, Kang X, Liu S, Zhen Y. Combination of 7- O-geranylquercetin and microRNA-451 enhances antitumor effect of Adriamycin by reserving P-gp-mediated drug resistance in breast cancer. Aging (Albany NY) 2022; 14:7156-7169. [PMID: 36107024 PMCID: PMC9512499 DOI: 10.18632/aging.204287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Although there are a lot of chemical drugs to treat breast cancer, increasing drug resistance of cancer cells has strongly hindered the effectiveness of chemotherapy. ATP-binding cassette transporters represented by P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) play an important role in drug resistance. This study aims to investigate the effect of 7-O-geranylquercetin (GQ) combining microRNA-451(miR-451) on reversing drug resistance of breast cancer and reveal the mechanism related to P-gp. Real-time RT-PCR and western blot assays showed that miR-326, miR-328, miR-451 and miR-155 inhibitor down-regulated the expression of genes MRP1, BCRP, MDR1 and the corresponding proteins MRP1, BCRP, P-gp, respectively. Cell counting kit-8 (CCK-8) assay indicated that these miRNAs reversed the resistance of MCF-7/ADR cells to Adriamycin (ADR), and miR-451 showed the greatest reversal effect. Combination of GQ and miR-451 enhanced the inhibitory effects of ADR on the proliferation and migration of MCF-7/ADR cells, and attenuated the expression of MDR1 and P-gp in MCF-7/ADR cells. A xenograft tumor model was used to show that GQ and miR-451 amplified the antitumor effect of ADR in nude mice, while western blot and immunohistochemical assays revealed the decreased expression of P-gp in tumor tissues. These results suggest that GQ and miR-451 have synergistic effect on reversing drug resistance through reducing the expression of MDR1 and P-gp in breast cancer MCF-7/ADR cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Multidrug Resistance-Associated Proteins/pharmacology
- Neoplasm Proteins/metabolism
- Quercetin/analogs & derivatives
Collapse
Affiliation(s)
- Yuling Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaohong Li
- Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian 116001, China
| | - Lei Shi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Nan Wu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Youlin Gan
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shanshan Huang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shuxin Liu
- Affiliated Dalian Municipal Central Hospital of Dalian Medical University, Dalian 116033, China
- Dalian Key Laboratory of Intelligent Blood Purification, Dalian 116033, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
7
|
Zou Y, Zhen Y, Zhao Y, Chen H, Wang R, Wang W, Ma P, Zhi D, Ju B, Zhang S. pH-sensitive, tail-modified, ester-linked ionizable cationic lipids for gene delivery. BIOMATERIALS ADVANCES 2022; 139:212984. [PMID: 35882140 DOI: 10.1016/j.bioadv.2022.212984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Ionizable cationic lipids have great potential for gene delivery, yet the effect of the molecular structure of such lipids on gene delivery efficiency is an ongoing research challenge. To better understand corresponding structure-function activity relationships, we synthesized four ester-linked, pH-responsive, ionizable cationic lipids. The screened DEDM4 lipid, containing 2-ethylenedimethylamine in the headgroup and a branched-chain tail, exhibited a high delivery efficacy of plasmid DNA and siRNA in A549 cells, which was comparable with that of the commercial reagent lipofectamine 3000 (lipo3000). Moreover, because of its pKa value of 6.35 and pH-sensitivity under acidic conditions, DEDM4 could carry sufficient positive charge in the acidic environment of endosomes and interact with the endosome lumen, leading to destruction of the endomembrane and subsequent release of siRNA into the cytoplasm with endosomal escape. Furthermore, we used DEDM4 to deliver IGF-1R siRNA to induce cancer cell apoptosis, thereby leading to great tumor inhibition. More importantly, it also showed very low toxicity in vivo. These structure-activity data for DEDM4 demonstrate potential clinical applications of DEDM4-mediated gene delivery for cancer.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
8
|
Wang R, Xuan Y, Zhao Y, Wang W, Ma P, Ju B, Zhen Y, Zhang S. Cationic Nanoparticulate System for Codelivery of MicroRNA-424 and Podophyllotoxin as a Multimodal Anticancer Therapy. Mol Pharm 2022; 19:2092-2104. [PMID: 35533302 DOI: 10.1021/acs.molpharmaceut.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the complexity of cancer ecosystems, the efficacy of single-agent chemotherapy is limited. Herein, we report the use of cationic nanoparticles (designated PPCNs) generated from a chemically modified form of the chemotherapeutic agent podophyllotoxin (PPT) to deliver both microRNA-424 (miR-424) and PPT to tumor cells, thus combining chemotherapy and gene therapy. We evaluated the optimal loading ratio of miR-424─which targets programmed cell death ligand 1 (PD-L1) mRNA and reduces PD-L1 production, thus promoting the attack of tumor cells by T cells─for effective delivery of miR-424 and PPCNs into nonsmall-cell lung cancer cells (H460). Because miR-424 can reverse chemotherapy resistance, treatment of the tumor cells with the combination of miR-424 and PPT enhanced their sensitivity to PPT. Because miR-424 and the PPCNs regulated PD-L1 production in different ways, the miR-424@PPCN complexes were significantly more efficacious than either miR-424 or PPCNs alone. We also demonstrated that treatment of tumor-bearing mice with these complexes significantly inhibited tumor growth and extended survival. Moreover, additional in vitro experiments revealed that the complexes could remodel the tumor immune microenvironment, relieve immunosuppression, and achieve immune normalization. This novel system for delivering a combination of PPT and miR-424 shows great potential for the multimodal treatment of lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
9
|
Wang R, Zhao Y, Huang Z, Zhou Y, Wang W, Xuan Y, Zhen Y, Ju B, Guo S, Zhang S. Self-Assembly of Podophyllotoxin-Loaded Lipid Bilayer Nanoparticles for Highly Effective Chemotherapy and Immunotherapy via Downregulation of Programmed Cell Death Ligand 1 Production. ACS NANO 2022; 16:3943-3954. [PMID: 35166522 DOI: 10.1021/acsnano.1c09391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low drug delivery efficiency elevates the cost of medication, lowers the therapeutic efficacy, and appears as a leading reason for unmet needs in anticancer therapies. Herein, we report the development of self-assembled podophyllotoxin-loaded lipid bilayer nanoparticles that inhibit the production of programmed cell death ligand 1 in lung cancer cells and promote tumor-specific immune responses, thus offering a strategy for regulating the immunosuppressive microenvironment of tumors. In addition, encapsulation of podophyllotoxin in the nanoparticles reduced its systemic toxicity, enhanced its penetration into tumors, and increased its antitumor efficacy. Systemic injection of the nanoparticles into tumor-bearing mice not only prevented tumor immune escape but also significantly inhibited tumor growth and extended survival. In general, the podophyllotoxin-loaded nanoparticles exhibited both immunological effects and antitumor effects in addition to having better targeting activity and fewer side effects than free podophyllotoxin. We expect our findings to facilitate the development of therapies for lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
10
|
Structure-activity relationships of pH-responsive and ionizable lipids for gene delivery. Int J Pharm 2022; 617:121596. [PMID: 35181463 DOI: 10.1016/j.ijpharm.2022.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Ionizable lipids are the leading vectors for gene therapy. Understanding the effects of molecular structure on efficient gene delivery is one of the most important challenges for maximizing the utility of such lipid vectors. We synthesized an array of pH-responsive and ionizable lipids to investigate the relationship between lipid structure and activity. The optimized lipid (EDM) has double tertiary amines in the headgroup and an ester linker. EDM exhibited efficient DNA and siRNA delivery to, and gene silencing of, A549 cells. EDM has a pKa value of 6.67, which enabled it to quickly escape from the endosome after entering the cell; the ester linkages rapidly degraded and enabled gene release into the cytoplasm. EDM also delivered IGF-1R siRNA to inhibit tumor growth and induce cancer cell apoptosis by efficient inhibition of IGF-1R expression in mice. Our study on the structure-activity relationships of ionizable lipids will facilitate clinical applications.
Collapse
|
11
|
A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence. Int J Biol Macromol 2021; 182:1339-1350. [PMID: 34000316 DOI: 10.1016/j.ijbiomac.2021.05.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Surgical resection of the tumor remains the preferred treatment for most solid tumors at an early stage, but surgical treatment often leads to massive bleeding and residual tumor cells. Therefore, a novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers (CFAGS) for rapid hemostasis and prevention of tumor recurrence was prepared by using an electrospinning and interpenetrating polymer network (IPN) strategy. The present results show that alginate/gelatin sponge display excellent hemostatic properties and possess more advantages than commercial gelatin hemostasis sponge. More importantly, CFAGS could control the release of curcumin, inducing curcumin to accumulate at the surgical site of the tumor, thereby inhibiting local tumor recurrence in the subcutaneous postoperative recurrence model. In addition, the sponge was safe to implant in the body and did not cause toxicity to normal tissues and organs. This approach represents a new strategy to implant a dual functional sponge at the postoperative site as an adjuvant to the surgical treatment of cancer.
Collapse
|
12
|
Zhao Y, Zhao T, Cao Y, Sun J, Zhou Q, Chen H, Guo S, Wang Y, Zhen Y, Liang XJ, Zhang S. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS NANO 2021; 15:6517-6529. [PMID: 33749240 DOI: 10.1021/acsnano.0c08790] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of photothermal therapy (PTT) and gene therapy (GT) shows great potential to achieve synergistic anti-tumor activity. However, the lack of a controlled release of genes from carriers remains a severe hindrance. Herein, peptide lipid (PL) and sucrose laurate (SL) were used to coat single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs) to form bifunctional delivery systems (denoted SCNT-PS and MCNT-PS, respectively) with excellent temperature-sensitivity and photothermal performance. CNT/siRNA suppressed tumor growth by silencing survivin expression while exhibiting photothermal effects under near-infrared (NIR) light. SCNT-PS/siRNA showed very high anti-tumor activity, resulting in the complete inhibition of some tumors. It was highly efficient for systemic delivery to tumor sites and to facilitate siRNA release owing to the phase transition of the temperature-sensitive lipids, due to PL and SL coating. Thus, SCNT-PS/siRNA is a promising anti-tumor nanocarrier for combined PTT and GT.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yingnan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifeng Wang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
13
|
Illescas BM, Pérez-Sánchez A, Mallo A, Martín-Domenech Á, Rodríguez-Crespo I, Martín N. Multivalent cationic dendrofullerenes for gene transfer: synthesis and DNA complexation. J Mater Chem B 2021; 8:4505-4515. [PMID: 32369088 DOI: 10.1039/d0tb00113a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-viral nucleic acid vectors able to display high transfection efficiencies with low toxicity and overcoming the multiple biological barriers are needed to further develop the clinical applications of gene therapy. The synthesis of hexakis-adducts of [60]fullerene endowed with 12, 24 and 36 positive ammonium groups and a tridecafullerene appended with 120 positive charges has been performed. The delivery of a plasmid containing the green fluorescent protein (EGFP) gene into HEK293 (Human Embryonic Kidney) cells resulting in effective gene expression has demonstrated the efficacy of these compounds to form polyplexes with DNA. Particularly, giant tridecafullerene macromolecules have shown higher efficiency in the complexation and transfection of DNA. Thus, they can be considered as promising non-viral vectors for transfection purposes.
Collapse
Affiliation(s)
- Beatriz M Illescas
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Alfonso Pérez-Sánchez
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | - Araceli Mallo
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ángel Martín-Domenech
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain.
| | | | - Nazario Martín
- Departamento de Química Orgánica, Facultad de Química, Universidad Complutense, Madrid 28040, Spain. and IMDEA-Nanociencia, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
14
|
Integrin α vβ 3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf B Biointerfaces 2021; 201:111623. [PMID: 33636597 DOI: 10.1016/j.colsurfb.2021.111623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapy for tumor treatment remains flawed because it fails to limit cytotoxicity to a small set of selectable tissues. Active targeting techniques for the delivery of drugs to specific sites are increasingly used to enhance drug accumulation at tumor sites with the aim of reducing side effects in vivo. Liposomes, modified with different targeting ligands, are considered to be one of the most promising targeted drug carriers. Herein, novel linear and cyclic arginine-glycine-aspartate (RGD) peptide-based lipids were synthesized to develop modified liposomal drug delivery systems with active targeting and pH-sensitivity. The RGD-modified liposomes showed excellent active targeting ability for integrin αvβ3 receptors, resulting in improved cellular uptake. The modified liposomes also enhanced intracellular doxorubicin (DOX) release because of their degradation in an acidic environment. Consequently, the RGD-modified, DOX-loaded liposomes exhibited significant antitumor efficacy and low toxicity in vitro and in vivo. In particular, 5% cRGD-lipid modified DOX-loaded liposome showed the greatest inhibition of tumor growth in mice among the tested formulations, and much less toxicity than free DOX. In conclusion, the DOX-loaded pH-sensitive liposome modified with 5% cRGD-lipid developed in the current study provides a potential approach for improved tumor therapy.
Collapse
|
15
|
Liang Z, Du L, Zhang E, Zhao Y, Wang W, Ma P, Dai M, Zhao Q, Xu H, Zhang S, Zhen Y. Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111847. [PMID: 33579510 DOI: 10.1016/j.msec.2020.111847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
Targeted gene therapy has led to significant breakthroughs in cancer treatment. Heat shock protein gp96 is an emerging target for tumor treatment because of its transfer ability from reticulum to tumor cell surface. CDO14 is a peptide cationic liposome developed in our laboratory with higher gene transfection efficiency and lower toxicity compared with the existing cationic liposomes. In this study, gp96-targeted liposome p37-CDO14 was constructed by modifying cationic liposome CDO14 with a gp96 inhibitor, helical polypeptide p37. Liposome p37-CDO14 could specifically bind to breast cancer cells with gp96-overexpression on the cell membrane. Both liposomes CDO14 and p37-CDO14 showed high delivery efficiency for survivin siRNA (siSuvi) to SK-BR-3 and MCF-7 cells via obviously decreased survivin expression level and cell viability. P37-CDO14 significantly increased the accumulation of FAM-siRNA in tumor compared with CDO14. SiSuvi transfected by CDO14 and p37-CDO14 could inhibit the growth of xenograft in mice and the expression of survivin in tumor tissues. The anti-tumor effect of siSuvi delivered by p37-CDO14 was much higher than that delivered by CDO14. This suggests that targeted liposome p37-CDO14 is a potential gene vector for the therapy of gp96 overexpressed breast cancer.
Collapse
Affiliation(s)
- Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Linying Du
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Enxia Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengyuan Dai
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Qi Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
16
|
Zhao Y, Zhao T, Du Y, Cao Y, Xuan Y, Chen H, Zhi D, Guo S, Zhong F, Zhang S. Interaction kinetics of peptide lipids-mediated gene delivery. J Nanobiotechnology 2020; 18:144. [PMID: 33069258 PMCID: PMC7568367 DOI: 10.1186/s12951-020-00707-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During the course of gene transfection, the interaction kinetics between liposomes and DNA is speculated to play very important role for blood stability, cellular uptake, DNA release and finally transfection efficiency. RESULTS As cationic peptide liposomes exhibited great gene transfer activities both in vitro and in vivo, two peptide lipids, containing a tri-ornithine head (LOrn3) and a mono-ornithine head (LOrn1), were chosen to further clarify the process of liposome-mediated gene delivery in this study. The results show that the electrostatically-driven binding between DNA and liposomes reached nearly 100% at equilibrium, and high affinity of LOrn3 to DNA led to fast binding rate between them. The binding process between LOrn3 and DNA conformed to the kinetics equation: y = 1.663631 × exp (- 0.003427x) + 6.278163. Compared to liposome LOrn1, the liposome LOrn3/DNA lipoplex exhibited a faster and more uniform uptake in HeLa cells, as LOrn3 with a tri-ornithine peptide headgroup had a stronger interaction with the negatively charged cell membrane than LOrn1. The efficient endosomal escape of DNA from LOrn3 lipoplex was facilitated by the acidity in late endosomes, resulting in broken carbamate bonds, as well as the "proton sponge effect" of the lipid. CONCLUSIONS The interaction kinetics is a key factor for DNA transfection efficiency. This work provided insights into peptide lipid-mediated DNA delivery that could guide the development of the next generation of delivery systems for gene therapeutics.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Tianyi Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyan Du
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yingnan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Fangli Zhong
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Sciences, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|
17
|
Liposome-based co-delivery of 7-O-geranyl-quercetin and IGF-1R siRNA for the synergistic treatment of non-small cell lung cancer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Chen Z, Krishnamachary B, Pachecho-Torres J, Penet MF, Bhujwalla ZM. Theranostic small interfering RNA nanoparticles in cancer precision nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1595. [PMID: 31642207 DOI: 10.1002/wnan.1595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
Due to their ability to effectively downregulate the expression of target genes, small interfering RNA (siRNA) have emerged as promising candidates for precision medicine in cancer. Although some siRNA-based treatments have advanced to clinical trials, challenges such as poor stability during circulation, and less than optimal pharmacokinetics and biodistribution of siRNA in vivo present barriers to the systemic delivery of siRNA. In recent years, theranostic nanomedicine integrating siRNA delivery has attracted significant attention for precision medicine. Theranostic nanomedicine takes advantage of the high capacity of nanoplatforms to ferry cargo with imaging and therapeutic capabilities. These theranostic nanoplatforms have the potential to play a major role in gene specific treatments. Here we have reviewed recent advances in the use of theranostic nanoplatforms to deliver siRNA, and discussed the opportunities as well as challenges associated with this exciting technology. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Zhihang Chen
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jesus Pachecho-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Xu X, Liu A, Bai Y, Li Y, Zhang C, Cui S, Piao Y, Zhang S. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Zuo J, Jiang Y, Zhang E, Chen Y, Liang Z, Zhu J, Zhao Y, Xu H, Liu G, Liu J, Wang W, Zhang S, Zhen Y. Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci 2019; 227:145-152. [PMID: 31009625 DOI: 10.1016/j.lfs.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
Abstract
AIMS To investigate the antitumor effect of 7-O-geranylquercetin (GQ) combining with survivin siRNA (siSuvi) or IL-10 siRNA (siIL-10) to breast cancer. MAIN METHODS Xenograft tumor model was established by subcutaneously inoculating human breast cancer MCF-7 cells in BALB/c nude mice. Transfection efficiency of siRNA mediated by cationic liposome CDO14 in MCF-7 cells and tumor bearing mice was measured by flow cytometer and living imaging sysytem, respectively. Cell viability was detected using CCK-8 assay. Cell apoptosis was determined by Hoechst33342 staining and AV-PI staining. Tumors bearing mice were administered with GQ by gavage, and/or with liposome CDO14 mediated siRNAs via tail intravenous injection. Expression levels of proteins and cytokines were detected by western blot and ELISA, respectively. KEY FINDINGS Liposome CDO14 could deliver siRNA to tumor effectively. Combination of GQ and siSuvi promoted the antiproliferation and pro-apoptosis effects of GQ or siSuvi to MCF-7 cells, and reduced the level of survivin and raised the level of caspase-7 in cells. GQ combining with siSuvi inhibited the growth of tumor, down-regulated the expression of survivin and up-regulated the expression of caspase-7 in tumor tissue. Similarly, GQ combining with siIL-10 inhibited the growth of tumor, decreased the level of IL-10 and increased the level of TNF-α. These results revealed that GQ enhanced the pro-apoptosis effect of siSuvi on tumor cells and the modulating effect of siIL-10 on tumor microenvironment. SIGNIFICANCES Synergistic anti-tumor effect of GQ and siRNAs against breast cancer proved that chemical drugs combining with siRNAs is a promising antitumor strategy.
Collapse
Affiliation(s)
- Jiaxin Zuo
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yameng Jiang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Enxia Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yuling Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jie Zhu
- Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guoliang Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jiasi Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
21
|
Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids Surf B Biointerfaces 2019; 179:66-76. [PMID: 30947085 DOI: 10.1016/j.colsurfb.2019.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 01/22/2023]
Abstract
The toxicology of cationic liposomes was explored to advance clinical trials of liposome-mediated gene therapy through the analysis of a peptide cationic liposome with DOTAP as a positive control. We first investigated the delivery of luciferase siRNA by several peptide liposomes in mice bearing lung cancer A549 cell xenografts. Of these, a cationic liposome (CDO14) was selected for further investigation. CDO14 efficiently mediated IGF-1R-siRNA delivery and inhibited the growth of the A549 cell xenografts. The in vivo toxicity and toxicological mechanisms of the selected liposome were evaluated to assess its potential utility for gene delivery. Specifically, the effects of CDO14 on mouse body weight, hematology, urine, serum biochemical indices, and histopathology were measured in acute toxicity and subchronic toxicity tests. CDO14 showed limited toxicological effects at low dosages although it induced pulmonary inflammation and liver injury at higher dosages. The toxicity of CDO14 was lower than that of DOTAP, and the toxicity of CDO14 did not change when complexed with siRNA. The pulmonary inflammation induced by CDO14 occurred via expressional up-regulation of the pro-inflammatory cytokines TNF-α and IL-6, and expressional down-regulation of the anti-inflammatory cytokine IL-10. Liver injury induced by CDO14 was mediated by the JAK2-STAT3 signaling pathway. Lastly, CDO14 did not affect the expression of apoptosis-related proteins in normal liver cells, suggesting that it did not induce apoptosis of normal cells. The toxicological results demonstrate that peptide-based headgroups in lipids are superior to those with quaternary ammonium headgroups that are used as gene vectors for cancer therapy.
Collapse
|
22
|
Feng Y, Hu H, Liang S, Wang D. Preparation of gene drug delivery systems of cationic peptide lipid with 0G-PAMAM as hydrophilic end and its biological properties evaluation. Chem Phys Lipids 2018; 224:104685. [PMID: 30308199 DOI: 10.1016/j.chemphyslip.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
Abstract
As an efficient gene delivery, non-viral vectors should have high transfection efficiency, excellent endosomal escape, low cytotoxicity, and the ability to rapidly release the gene into the cytoplasm.Cationic liposome have been widely used as efficient gene carriers, but the cytotoxicity, rapid degradation and low cellular uptake are major drawback impeding its further appolication. Herein, with double lauric acid as hydrophobic chains, tartaric acid as skeleton, 0 generation PAMAM modified with lysine as hydrophilic head, a new type cationic peptide lipid was synthetised. The alkyl chain promote lipid across cell membranes and with membrane fusion, 0 generation PAMAM modified with lysine hydrophilic end amino can contain a large number of protons which can change into ammonium and combine with the DNA negatively charge phosphate groups. It is expected that this carrier has low toxicity, high transfection efficiency and targeting property. By adjusting the cationic liposome/gene weight ratio, the transfection system was optimized to improved gene transfection efficiency, reduce cytotoxicity, and increase property and stability, etc.
Collapse
Affiliation(s)
- Yingying Feng
- School of Biosciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Haimei Hu
- School of Biosciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shuanghong Liang
- School of Biosciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dan Wang
- School of Biosciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
23
|
Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb) 2018; 7:473-479. [PMID: 30090597 PMCID: PMC6062336 DOI: 10.1039/c8tx00005k] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 μg mL-1 and 340.5 μg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.
Collapse
Affiliation(s)
- Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yan Gong
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Xiao Lin
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| |
Collapse
|
24
|
Effects of sucrose ester structures on liposome-mediated gene delivery. Acta Biomater 2018; 72:278-286. [PMID: 29609051 DOI: 10.1016/j.actbio.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Sucrose esters (SEs) have great potential applications in gene delivery because of their low toxicity, excellent biocompatibility, and biodegradability. By using tripeptide-based lipid (CDO) as a model lipid and SEs as helper lipids, a series of liposomes were prepared. The SEs with hydrophilic-lipophilic balance (HLB) values of 1, 6, 11, or 16 and the fatty acids of laurate, stearate, or oleate were used in the liposomes. We investigated the effect of HLB values of SEs and fatty acid types on gene transfection efficiency and toxicity of liposomes. The results showed that transfection efficiencies of the liposomes containing SEs with HLB value of 6 were superior to other liposomes in HeLa, MCF-7, NCI-H460, and A549 tumor cells. For the same HLB value, liposomes of laurate SEs were preferable to transfect cells compared to SEs of stearate and oleate. The liposomes with SEs showed higher cellular uptake than liposome without SEs (LipoCDO). LipoL12-6/Luc-siRNA treatment on tumor-bearing mice exhibited about 60% in vivo gene silencing of luciferase, and LipoL12-6 could mediate IGF-1R siRNA to greatly inhibit tumor growth. Moreover, liposomes with SEs revealed remarkably low toxicity in vitro and in vivo. The illustration of SE structures on gene delivery will promote the use of SEs for clinical trials of liposomes. STATEMENT OF SIGNIFICANCE This article is the first to study the effects of various chain lengths and hydrophilic-lipophilic balance (HLB) of sucrose esters (SEs) on gene transfection efficiency and safety of liposomes for gene delivery. The in vitro delivery of pDNA and siRNA by lipoplexes against HeLa, MCF-7, NCI-H460, and A549 tumor cells showed that the lipoplexes could lead to better transfection and lower cytotoxicity after the addition of SEs. SEs with shorter chain and a median HLB value could provide the liposomes with much higher gene transfection efficiency than others. The in vivo delivery of siRNA to tumor-bearing mice further confirmed that liposome containing laurate SE (LipoL12-6) could be a potential therapeutic vector, as it delivered siRNA to silence nearly 60% of the luciferase in tumors and also greatly inhibited the tumor growth. Therefore, the addition of SEs to liposomes proved to be relatively safe in vitro and in vivo. These preliminary results demonstrated that SEs show great potential for constructing controlled-release systems for gene delivery. The readers will get insights into a series of gene vectors and deepen their understanding about gene delivery.
Collapse
|
25
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
26
|
Bridges RJ, Bradbury NA. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handb Exp Pharmacol 2018; 245:385-425. [PMID: 29460152 DOI: 10.1007/164_2018_103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA.
| |
Collapse
|
27
|
Borgheti-Cardoso LN, Kooijmans SAA, Fens MHAM, van der Meel R, Vicentini FTMC, Fantini MCA, Bentley MVLB, Schiffelers RM. In Situ Gelling Liquid Crystalline System as Local siRNA Delivery System. Mol Pharm 2017; 14:1681-1690. [DOI: 10.1021/acs.molpharmaceut.6b01141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Livia N. Borgheti-Cardoso
- School of Pharmaceutical
Sciences of Ribeirao Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Sander A. A. Kooijmans
- Laboratory
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan, 100, 3584 CX Utrecht, The Netherlands
- Department of
Medical Sciences, The Camussi Laboratory, University of Torino, Via Nizza, 52, 10126 Torino, Italy
| | - Marcel H. A. M. Fens
- Laboratory
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan, 100, 3584 CX Utrecht, The Netherlands
| | - Roy van der Meel
- Laboratory
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan, 100, 3584 CX Utrecht, The Netherlands
- Department of Biochemistry
and Molecular Biology, University of British Columbia, 2350 Health
Sciences Mall, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Fabiana T. M. C. Vicentini
- School of Pharmaceutical
Sciences of Ribeirao Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Marcia C. A. Fantini
- Instituto de Física, University of São Paulo, Rua do Matão, 1371, Butantã, 05508-090 São
Paulo, São Paulo, Brazil
| | - Maria Vitória L. B. Bentley
- School of Pharmaceutical
Sciences of Ribeirao Preto, University of São Paulo, Avenida do Café, s/n, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Raymond M. Schiffelers
- Laboratory
of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan, 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
28
|
Evaluation of Maltose-Based Cationic Liposomes with Different Hydrophobic Tails for Plasmid DNA Delivery. Molecules 2017; 22:molecules22030406. [PMID: 28287501 PMCID: PMC6155304 DOI: 10.3390/molecules22030406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022] Open
Abstract
In this paper, three cationic glycolipids with different hydrophobic chains Malt-DiC12MA (IX a), Malt-DiC14MA (IX b) and Malt-DiC16MA (IX c) were constructed by using maltose as starting material via peracetylation, selective 1-O-deacetylation, trichloroacetimidation, glycosylation, azidation, deacetylation, Staudinger reaction, tertiary amination and quaternization. Target compounds and some intermediates were characterized by 1H-NMR, 13C-NMR, 1H-1H COSY and 1H-13C HSQC. The results of gel electrophoresis assay, atomic force microscopy images (AFM) and dynamic light scattering (DLS) demonstrate that all the liposomes could efficiently bind and compact DNA (N/P ratio less than 2) into nanoparticles with proper size (88 nm–146 nm, PDI < 0.4) and zeta potential (+15 mV–+26 mV). The transfection efficiency and cellular uptake of glycolipids in HEK293 cell were evaluated through the enhanced green fluorescent protein (EGFP) expression and Cy3-labeled pEGFP-C1 (Enhanced Green Fluorescent Protein plasmid) images, respectively. Importantly, it indicated that Malt-DiC14MA exhibited high gene transfer efficiency and better uptake capability at N/P ratios of 8:1. Additionally, the result of cell viability showed glycolipids exhibited low biotoxicity and good biocompatibility by thiazolyl blue tetrazolium bromide (MTT) assay.
Collapse
|
29
|
Liu Q, Su RC, Yi WJ, Zheng LT, Lu SS, Zhao ZG. pH and reduction dual-responsive dipeptide cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery. Eur J Med Chem 2017; 129:1-11. [PMID: 28214630 DOI: 10.1016/j.ejmech.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/14/2017] [Accepted: 02/05/2017] [Indexed: 01/28/2023]
Abstract
A series of tocopherol-based cationic lipid 3a-3f bearing a pH-sensitive imidazole moiety in the dipeptide headgroup and a reduction-responsive disulfide linkage were designed and synthesized. Acid-base titration of these lipids showed good buffering capacities. The liposomes formed from 3 and co-lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) could efficiently bind and condense DNA into nanoparticles. Gel binding and HPLC assays confirmed the encapsulated DNA could release from lipoplexes 3 upon addition of 10 mM glutathione (GSH). MTT assays in HEK 293 cells demonstrated that lipoplexes 3 had low cytotoxicity. The in vitro gene transfection studies showed cationic dipeptide headgroups clearly affected the transfection efficiency (TE), and arginine-histidine based dipeptide lipid 3f give the best TE, which was 30.4 times higher than Lipofectamine 3000 in the presence of 10% serum. Cell-uptake assays indicated that basic amino acid containing dipeptide cationic lipids exhibited more efficient cell uptake than serine and aromatic amino acids based dipeptide lipids. Confocal laser scanning microscopy (CLSM) studies corroborated that 3 could efficiently deliver and release DNA into the nuclei of HeLa cells. These results suggest that tocopherol-based dipeptide cationic lipids with pH and reduction dual-sensitive characteristics might be promising non-viral gene delivery vectors.
Collapse
Affiliation(s)
- Qiang Liu
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| | - Rong-Chuan Su
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China
| | - Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China
| | - Li-Ting Zheng
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China
| | - Shan-Shan Lu
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, PR China.
| |
Collapse
|
30
|
Zhao YN, Piao YZ, Zhang CM, Jiang YM, Liu A, Cui SH, Zhi DF, Zhen YH, Zhang SB. Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. J Mater Chem B 2017; 5:7963-7973. [DOI: 10.1039/c7tb01915g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Replacement of quaternary ammonium headgroups by tri-ornithine in lipids improved gene delivery in vitro and in vivo with little toxicity.
Collapse
Affiliation(s)
- Y. N. Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. Z. Piao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - C. M. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. M. Jiang
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - A. Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - S. H. Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - D. F. Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| | - Y. H. Zhen
- College of Phamacy
- Dalian Medical University
- Dalian
- China
| | - S. B. Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education
- Dalian Minzu University
- Dalian
- China
| |
Collapse
|
31
|
Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery. Colloids Surf B Biointerfaces 2016; 145:454-461. [DOI: 10.1016/j.colsurfb.2016.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/16/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023]
|
32
|
Kim JS, Kang SJ, Jeong HY, Kim MW, Park SI, Lee YK, Kim HS, Kim KS, Park YS. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy. Int J Oncol 2016; 49:1130-8. [DOI: 10.3892/ijo.2016.3619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
|
33
|
Junquera E, Aicart E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors. Adv Colloid Interface Sci 2016; 233:161-175. [PMID: 26265376 DOI: 10.1016/j.cis.2015.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/12/2015] [Indexed: 12/16/2022]
Abstract
Due to the potential use as transfecting agents of nucleic acids (DNA or RNA), multivalent cationic non-viral vectors have received special attention in the last decade. Much effort has been addressed to synthesize more efficient and biocompatible gene vectors able to transport nucleic acids into the cells without provoking an immune response. Among them, the mostly explored to compact and transfect nucleic acids are: (a) gemini and multivalent cationic lipids, mixed with a helper lipid, by forming lipoplexes; and (b) cationic polymers, polycations, and polyrotaxanes, by forming polyplexes. This review is focused on the progress and recent advances experimented in this area, mainly during the present decade, devoting special attention to the lipoplexes and polyplexes, as follows: (a) to its biophysical characterization (mainly electrostatics, structure, size and morphology) using a wide variety of experimental methods; and (b) to its biological activity (transfection efficacy and cytotoxicity) addressed to confirm the optimum formulations and viability of these complexes as very promising gene vectors of nucleic acids in nanomedicine.
Collapse
Affiliation(s)
- Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
34
|
Luan CR, Liu YH, Zhang J, Yu QY, Huang Z, Wang B, Yu XQ. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10743-10751. [PMID: 27077449 DOI: 10.1021/acsami.6b01561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility.
Collapse
Affiliation(s)
- Chao-Ran Luan
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Qing-Ying Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Zheng Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Bing Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University , Chengdu 610064, People's Republic of China
| |
Collapse
|
35
|
Yi WJ, Zheng LT, Su RC, Liu Q, Zhao ZG. Amino Acid-Based Cationic Lipids With α
-Tocopherol Hydrophobic Tail for Efficient Gene Delivery. Chem Biol Drug Des 2015; 86:1192-202. [DOI: 10.1111/cbdd.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | - Li-Ting Zheng
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | | | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| |
Collapse
|