1
|
Cain RL, Webb IK. Online protein unfolding characterized by ion mobility electron capture dissociation mass spectrometry: cytochrome C from neutral and acidic solutions. Anal Bioanal Chem 2023; 415:749-758. [PMID: 36622393 DOI: 10.1007/s00216-022-04501-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) experiments, including ion mobility spectrometry mass spectrometry (ESI-IMS-MS) and electron capture dissociation (ECD) of proteins ionized from aqueous solutions, have been used for the study of solution-like structures of intact proteins. By mixing aqueous proteins with denaturants online before ESI, the amount of protein unfolding can be precisely controlled and rapidly analyzed, permitting the characterization of protein folding intermediates in protein folding pathways. Herein, we mixed various pH solutions online with aqueous cytochrome C for unfolding and characterizing its unfolding intermediates with ESI-MS charge state distribution measurements, IMS, and ECD. The presence of folding intermediates and unfolded cytochrome c structures were detected from changes in charge states, arrival time distributions (ATDs), and ECD. We also compared structures from nondenaturing and denaturing solution mixtures measured under "gentle" (i.e., low energy) ion transmission conditions with structures measured under "harsh" (i.e., higher energy) transmission. This work confirms that when using "gentle" instrument conditions, the gas-phase cytochrome c ions reflect attributes of the various solution-phase structures. However, "harsh" conditions that maximize ion transmission produce extended structures that no longer correlate with changes in solution structure.
Collapse
Affiliation(s)
- Rebecca L Cain
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
2
|
Abramsson ML, Sahin C, Hopper JTS, Branca RMM, Danielsson J, Xu M, Chandler SA, Österlund N, Ilag LL, Leppert A, Costeira-Paulo J, Lang L, Teilum K, Laganowsky A, Benesch JLP, Oliveberg M, Robinson CV, Marklund EG, Allison TM, Winther JR, Landreh M. Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. JACS AU 2021; 1:2385-2393. [PMID: 34977906 PMCID: PMC8717373 DOI: 10.1021/jacsau.1c00458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 05/03/2023]
Abstract
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Cagla Sahin
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Jonathan T. S. Hopper
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Rui M. M. Branca
- Department
of Oncology-Pathology, Science for Life
Laboratory and Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Jens Danielsson
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mingming Xu
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Shane A. Chandler
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Material and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Axel Leppert
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, 141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Lisa Lang
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Kaare Teilum
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Justin L. P. Benesch
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Mikael Oliveberg
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Erik G. Marklund
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Timothy M. Allison
- Biomolecular
Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jakob R. Winther
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| |
Collapse
|
3
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Sahin C, Österlund N, Leppert A, Johansson J, Marklund EG, Benesch JLP, Ilag LL, Allison TM, Landreh M. Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions. Chem Commun (Camb) 2021; 57:1450-1453. [PMID: 33439171 DOI: 10.1039/d0cc08135c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although native mass spectrometry is widely applied to monitor chemical or thermal protein denaturation, it is not clear to what extent it can inform about alkali-induced unfolding. Here, we probe the relationship between solution- and gas-phase structures of proteins under alkaline conditions. Native ion mobility-mass spectrometry reveals that globular proteins are destabilized rather than globally unfolded, which is supported by solution studies, providing detailed insights into alkali-induced unfolding events. Our results pave the way for new applications of MS to monitor structures and interactions of proteins at high pH.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden. and Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen N, 2200, Denmark
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 106 91, Sweden and Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Huddinge 141 83, Sweden
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, Uppsala, 751 23, Sweden
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden.
| | - Timothy M Allison
- Biomolecular Interaction Centre and School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden.
| |
Collapse
|
5
|
Szymkowicz L, Lento C, Wilson DJ. Impact of Cardiolipin and Phosphatidylcholine Interactions on the Conformational Ensemble of Cytochrome c. Biochemistry 2019; 58:3617-3626. [DOI: 10.1021/acs.biochem.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisa Szymkowicz
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
6
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
7
|
Abstract
Proteins perform specific biological functions that strongly depend on their three-dimensional structure. This three-dimensional structure, i.e. the way the protein folds, is strongly determined by the interaction between the protein and the water solvent. We study the dynamics of water in aqueous solutions of several globular proteins at different degrees of urea-induced unfolding, using polarization-resolved femtosecond infrared spectroscopy. We observe that a fraction of the water molecules is strongly slowed down by their interaction with the protein surface. By monitoring the slow water fraction we can directly probe the amount of water-exposed protein surface. We find that at mild denaturing conditions, the water-exposed surface increases by almost 50%, while the secondary structure is still intact. This finding indicates that protein unfolding starts with the protein structure becoming less tight, thereby allowing water to enter.
Collapse
Affiliation(s)
- Carien C M Groot
- FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
8
|
Cong Y, Katipamula S, Trader CD, Orton DJ, Geng T, Baker ES, Kelly RT. Mass spectrometry-based monitoring of millisecond protein-ligand binding dynamics using an automated microfluidic platform. LAB ON A CHIP 2016; 16:1544-8. [PMID: 27009517 PMCID: PMC4846533 DOI: 10.1039/c6lc00183a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Characterizing protein-ligand binding dynamics is crucial for understanding protein function and for developing new therapeutic agents. We present a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and an integrated electrospray ionization source for mass spectrometry-based monitoring of protein-ligand binding dynamics. This platform offers many advantages, including solution-based binding, label-free detection, automated operation, rapid mixing, and low sample consumption.
Collapse
Affiliation(s)
- Yongzheng Cong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Shanta Katipamula
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Cameron D Trader
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| |
Collapse
|