1
|
Meier S, Wang KC, Sannelli F, Hoof JB, Wendland J, Jensen PR. Visualizing Metabolism in Biotechnologically Important Yeasts with dDNP NMR Reveals Evolutionary Strategies and Glycolytic Logic. Anal Chem 2024; 96:10901-10910. [PMID: 38938197 DOI: 10.1021/acs.analchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Saccharomyces cerevisiae has long been a pillar of biotechnological production and basic research. More recently, strides to exploit the functional repertoire of nonconventional yeasts for biotechnological production have been made. Genomes and genetic tools for these yeasts are not always available, and yeast genomics alone may be insufficient to determine the functional features in yeast metabolism. Hence, functional assays of metabolism, ideally in the living cell, are best suited to characterize the cellular biochemistry of such yeasts. Advanced in cell NMR methods can allow the direct observation of carbohydrate influx into central metabolism on a seconds time scale: dDNP NMR spectroscopy temporarily enhances the nuclear spin polarization of substrates by more than 4 orders of magnitude prior to functional assays probing central metabolism. We use various dDNP enhanced carbohydrates for in-cell NMR to compare the metabolism of S. cerevisiae and nonconventional yeasts, with an emphasis on the wine yeast Hanseniaspora uvarum. In-cell observations indicated more rapid exhaustion of free cytosolic NAD+ in H. uvarum and alternative routes for pyruvate conversion, in particular, rapid amination to alanine. In-cell observations indicated that S. cerevisiae outcompetes other biotechnologically relevant yeasts by rapid ethanol formation due to the efficient adaptation of cofactor pools and the removal of competing reactions from the cytosol. By contrast, other yeasts were better poised to use redox neutral processes that avoided CO2-emission. Beyond visualizing the different cellular strategies for arriving at redox neutral end points, in-cell dDNP NMR probing showed that glycolytic logic is more conserved: nontoxic precursors of cellular building blocks formed high-population intermediates in the influx of glucose into the central metabolism of eight different biotechnologically important yeasts. Unsupervised clustering validated that the observation of rapid intracellular chemistry is a viable means to functionally classify biotechnologically important organisms.
Collapse
Affiliation(s)
- Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Ke-Chuan Wang
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| | - Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Jakob Blæsbjerg Hoof
- Department of Bioengineering, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs. Lyngby, Denmark
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Pernille Rose Jensen
- Department of Health Technology Technical University of Denmark, Elektrovej 349, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Sannelli F, Wang KC, Jensen PR, Meier S. Rapid probing of glucose influx into cancer cell metabolism: using adjuvant and a pH-dependent collection of central metabolites to improve in-cell D-DNP NMR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4870-4882. [PMID: 37702554 DOI: 10.1039/d3ay01120h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Changes to metabolism are a hallmark of many diseases. Disease metabolism under physiological conditions can be probed in real time with in-cell NMR assays. Here, we pursued a systematic approach towards improved in-cell NMR assays. Unambiguous identifications of metabolites and of intracellular pH are afforded by a comprehensive, downloadable collection of spectral data for central carbon metabolites in the physiological pH range (4.0-8.0). Chemical shifts of glycolytic intermediates provide unique pH dependent patterns akin to a barcode. Using hyperpolarized 13C1 enriched glucose as the probe molecule of central metabolism in cancer, we find that early glycolytic intermediates are detectable in PC-3 prostate cancer cell lines, concurrently yielding intracellular pH. Using non-enriched and non-enhanced pyruvate as an adjuvant, reactions of the pentose phosphate pathway become additionally detectable, without significant changes to the barriers in upper glycolysis and to intracellular pH. The scope of tracers for in-cell observations can thus be improved by the presence of adjuvants, showing that a recently proposed effect of pyruvate in the tumor environment is paralleled by a rerouting of cancer cell metabolism towards producing building blocks for proliferation. Overall, the combined use of reference data for compound identification, site specific labelling for reducing overlap, and use of adjuvant afford increasingly detailed insight into disease metabolism.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| | - Ke-Chuan Wang
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800-Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Bygning 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Sannelli F, Jensen PR, Meier S. In-Cell NMR Approach for Real-Time Exploration of Pathway Versatility: Substrate Mixtures in Nonengineered Yeast. Anal Chem 2023; 95:7262-7270. [PMID: 37097609 DOI: 10.1021/acs.analchem.3c00225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The central carbon metabolism of microbes will likely be used in future sustainable bioproduction. A sufficiently deep understanding of central metabolism would advance the control of activity and selectivity in whole-cell catalysis. Opposite to the more obvious effects of adding catalysts through genetic engineering, the modulation of cellular chemistry through effectors and substrate mixtures remains less clear. NMR spectroscopy is uniquely suited for in-cell tracking to advance mechanistic insight and to optimize pathway usage. Using a comprehensive and self-consistent library of chemical shifts, hyperpolarized NMR, and conventional NMR, we probe the versatility of cellular pathways to changes in substrate composition. Conditions for glucose influx into a minor pathway to an industrial precursor (2,3-butanediol) can thus be designed. Changes to intracellular pH can be followed concurrently, while mechanistic details for the minor pathway can be derived using an intermediate-trapping strategy. Overflow at the pyruvate level can be induced in nonengineered yeast with suitably mixed carbon sources (here glucose with auxiliary pyruvate), thus increasing glucose conversion to 2,3-butanediol by more than 600-fold. Such versatility suggests that a reassessment of canonical metabolism may be warranted using in-cell spectroscopy.
Collapse
Affiliation(s)
- Francesca Sannelli
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| | - Pernille Rose Jensen
- Department of Health Technology, Technical University of Denmark, Elektrovej 349, 2800 Kgs Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
4
|
Jensen PR, Sannelli F, Stauning LT, Meier S. Enhanced 13C NMR detects extended reaction networks in living cells. Chem Commun (Camb) 2021; 57:10572-10575. [PMID: 34558573 DOI: 10.1039/d1cc03838a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insights into intracellular chemistry have remained sparse, but would be impactful for the advancement of biomedicine and bioproduction. A suitable 13C NMR approach provides improvements in sensitivity that make extended reaction networks and assay time windows, previously inaccessible cell densities and relative flux measurements accessible in living cells.
Collapse
Affiliation(s)
- Pernille Rose Jensen
- Department of Health Technology Technical University of Denmark Elektrovej, 349 2800-Kgs. Lyngby, Denmark.
| | - Francesca Sannelli
- Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| | - Ludvig Tving Stauning
- Department of Health Technology Technical University of Denmark Elektrovej, 349 2800-Kgs. Lyngby, Denmark. .,Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| | - Sebastian Meier
- Department of Chemistry Technical University of Denmark Kemitorvet, Bygning 207, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Elliot SG, Jessen BM, Taarning E, Madsen R, Meier S. Sensitive NMR method for detecting carbohydrate influx into competing chemocatalytic pathways. Analyst 2020; 145:4427-4431. [DOI: 10.1039/d0an00555j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic pathway studies in sustainable chemistry can be accelerated and have increased information content through the indirect detection of isotope-tracking experiments upon reduction of quaternary carbon sites.
Collapse
Affiliation(s)
- Samuel G. Elliot
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Bo M. Jessen
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | | | - Robert Madsen
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Sebastian Meier
- Department of Chemistry
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
6
|
Jensen PR, Matos MRA, Sonnenschein N, Meier S. Combined In-Cell NMR and Simulation Approach to Probe Redox-Dependent Pathway Control. Anal Chem 2019; 91:5395-5402. [PMID: 30896922 DOI: 10.1021/acs.analchem.9b00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic response of intracellular reaction cascades to changing environments is a hallmark of living systems. As metabolism is complex, mechanistic models have gained popularity for describing the dynamic response of cellular metabolism and for identifying target genes for engineering. At the same time, the detailed tracking of transient metabolism in living cells on the subminute time scale has become amenable using dynamic nuclear polarization-enhanced 13C NMR. Here, we suggest an approach combining in-cell NMR spectroscopy with perturbation experiments and modeling to obtain evidence that the bottlenecks of yeast glycolysis depend on intracellular redox state. In pre-steady-state glycolysis, pathway bottlenecks shift from downstream to upstream reactions within a few seconds, consistent with a rapid decline in the NAD+/NADH ratio. Simulations using mechanistic models reproduce the experimentally observed response and help identify unforeseen biochemical events. Remaining inaccuracies in the computational models can be identified experimentally. The combined use of rapid injection NMR spectroscopy and in silico simulations provides a promising method for characterizing cellular reactions with increasing mechanistic detail.
Collapse
Affiliation(s)
- Pernille R Jensen
- Department of Chemistry, Department of Health Technology and The Novo Nordisk Foundation Center of Biosustainability , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| | - Marta R A Matos
- Department of Chemistry, Department of Health Technology and The Novo Nordisk Foundation Center of Biosustainability , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| | - Nikolaus Sonnenschein
- Department of Chemistry, Department of Health Technology and The Novo Nordisk Foundation Center of Biosustainability , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| | - Sebastian Meier
- Department of Chemistry, Department of Health Technology and The Novo Nordisk Foundation Center of Biosustainability , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| |
Collapse
|
7
|
Park JM, Wu M, Datta K, Liu SC, Castillo A, Lough H, Spielman DM, Billingsley KL. Hyperpolarized Sodium [1- 13C]-Glycerate as a Probe for Assessing Glycolysis In Vivo. J Am Chem Soc 2017; 139:6629-6634. [PMID: 28467066 DOI: 10.1021/jacs.7b00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperpolarized 13C magnetic resonance spectroscopy (MRS) provides unprecedented opportunities to obtain clinical diagnostic information through in vivo monitoring of metabolic pathways. The continuing advancement of this field relies on the identification of molecular probes that can effectively interrogate pathways critical to disease. In this report, we describe the synthesis, development, and in vivo application of sodium [1-13C]-glycerate ([13C]-Glyc) as a novel probe for evaluating glycolysis using hyperpolarized 13C MRS. This agent was prepared by a concise synthetic route and formulated for dynamic nuclear polarization. [13C]-Glyc displayed a high level of polarization and long spin-lattice relaxation time-both of which are necessary for future clinical investigations. In vivo spectroscopic studies with hyperpolarized [13C]-Glyc in rat liver furnished metabolic products, [13C]-labeled pyruvate and lactate, originating from glycolysis. The levels of production and relative intensities of these metabolites were directly correlated with the induced glycolytic state (fasted versus fed groups). This work establishes hyperpolarized [13C]-Glyc as a novel agent for clinically relevant 13C MRS studies of energy metabolism and further provides opportunities for evaluating intracellular redox states in biochemical investigations.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Marvin Wu
- Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California 94132, United States
| | | | | | - Andrew Castillo
- Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California 94132, United States
| | - Heather Lough
- Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California 94132, United States
| | | | - Kelvin L Billingsley
- Department of Chemistry and Biochemistry, San Francisco State University , San Francisco, California 94132, United States.,Department of Chemistry and Biochemistry, California State University, Fullerton , Fullerton, California 92834, United States
| |
Collapse
|