1
|
Zhang TS, He JM, Liu YT, Li J, Zhuang W, Sun H, Hao WJ, Wu Q, Liu S, Jiang B. Radical-Triggered Bicyclization and Aryl Migration of 1,7-Diynes with Diphenyl Diselenide for the Synthesis of Selenopheno[3,4- c]quinolines. Org Lett 2025; 27:1000-1005. [PMID: 39818924 DOI: 10.1021/acs.orglett.4c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process. This transformation enables the one-step conversion of simple diselenides into diverse selenopheno[3,4-c]quinolines via a radical-promoted process, holding significant potential for new seleniferous heterocycles.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jia-Ming He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Yu-Tao Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Hua Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiong Wu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
2
|
DNA/protein binding and anticancer activity of ruthenium (II) arene complexes based on quinoline dipyrrin. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Effect of electron donors on the photophysical and theoretical properties of BODIPY dyes based on tetrazolo[1,5-a]quinoline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Zhong W, Li M, Jin Y, Jiang H, Wu W. Synthesis of 2,5-disubstituted selenophenes via a copper-catalyzed regioselective [2+2+1] cyclization of terminal alkynes and selenium. Chem Commun (Camb) 2022; 58:6522-6525. [PMID: 35575796 DOI: 10.1039/d2cc00958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a straightforward method for the synthesis of 2,5-disubstituted selenophenes via [2+2+1] cyclization of easily accessible terminal alkynes and elemental selenium has been developed. This reaction features high atom- and step-economy, excellent regioselectivity, good functional group tolerance and the use of stable and non-toxic selenium as a selenium source. A series of control experiments suggests that the reaction might undergo Glaser coupling reaction of two molecules of alkynes, followed by insertion of H2Se and subsequent cyclization. Moreover, the newly formed products can be further converted to diverse conjugated selenophene-based derivatives, demonstrating their potential applications in organic synthesis and materials science.
Collapse
Affiliation(s)
- Wentao Zhong
- Key Lab of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Meng Li
- Key Lab of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Yangbin Jin
- Key Lab of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wanqing Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
5
|
Aggregation-induced emission active luminescent polymeric nanofibers: From design, synthesis, fluorescent mechanism to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Abstract
The synthesis of organoselenium compounds continues to be a very active research area, due
to their distinct chemical, physical and biological properties. Selenium-based methods have developed
rapidly over the past few years and organoselenium chemistry has become a very powerful tool in the
hands of organic chemists. This review describes the synthesis of organocatalysed bioactive selenium
scaffolds especially including transition metal-catalysed diaryl selenide synthesis, Cu-catalysed selenium
scaffolds, Pd-catalysed selenium scaffolds, asymmetric catalysis, Nickel catalysed selenium scaffolds
and Rh-catalysed selenium scaffolds.
Collapse
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501- 1193, Japan
| |
Collapse
|
7
|
Synthesis and photophysical investigation of AIEgen dyes bearing quinoline and BODIPY scaffolds. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-020-02847-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Sonawane AD, Shimozuma A, Udagawa T, Ninomiya M, Koketsu M. Synthesis and photophysical properties of selenopheno[2,3-b]quinoxaline and selenopheno[2,3-b]pyrazine heteroacenes. Org Biomol Chem 2020; 18:4063-4070. [PMID: 32418998 DOI: 10.1039/d0ob00718h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we report the novel synthesis of three different heterocycles, namely 2-arylselenopheno[2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-2-arylselenopheno[2,3-b]quinoxaline and 6-phenyl-7-(arylselanyl)selenopheno[2,3-b]pyrazine derivatives, from the corresponding 2,3-dichloroquinoxaline and 2,3-dichloropyrazine derivatives. Furthermore, photophysical properties were investigated to study the effect of heteroatoms on UV-absorbance and fluorescence properties.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
9
|
Sonawane AD, Sonawane RA, Win KMN, Ninomiya M, Koketsu M. In situ air oxidation and photophysical studies of isoquinoline-fused N-heteroacenes. Org Biomol Chem 2020; 18:2129-2138. [PMID: 32134103 DOI: 10.1039/d0ob00375a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, metal free and environment friendly synthesis of isoquinoline-fused benzimidazole has been developed via in situ air oxidation. Also, syntheses of isoquinoline-fused quinazolinone heteroacenes were successfully achieved. The synthesized isoquinoline-fused benzimidazole and isoquinoline-fused quinazolinone derivatives showed λmax, Fmax and Φf values in the ranges 356-394 nm, 403-444 nm and 0.063-0.471, respectively, in CHCl3.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
10
|
Sonawane AD, Kubota Y, Koketsu M. Iron-Promoted Intramolecular Cascade Cyclization for the Synthesis of Selenophene-Fused, Quinoline-Based Heteroacenes. J Org Chem 2019; 84:8602-8614. [DOI: 10.1021/acs.joc.9b01061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
11
|
Singh VD, Dwivedi BK, Paitandi RP, Kumar Y, Pandey DS. Effect of substituents on photophysical and aggregation behaviour in quinoline based bis-terpyridine Zn(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Singh VD, Paitandi RP, Dwivedi BK, Singh RS, Pandey DS. Cyclometalated Ir(III) Complexes Involving Functionalized Terpyridine-Based Ligands Exhibiting Aggregation-Induced Emission and Their Potential Applications in CO2 Detection. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishwa Deepak Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India
| | - Rajendra Prasad Paitandi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India
| | - Bhupendra Kumar Dwivedi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, U.P., India
| |
Collapse
|
13
|
Paitandi RP, Singh RS, Dwivedi BK, Singh VD, Pandey DS. Time dependent aggregation induced emission enhancement and the study of molecular packing in closely related azo-phenol BODIPY species. Dalton Trans 2018; 47:3785-3795. [PMID: 29446426 DOI: 10.1039/c7dt04047d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent azo-phenol BODIPYs (1-3) have been obtained by the substituent (-OCH3/-CH3) directed synthesis of ortho (L1) and para (L2-L3) azo-phenol aldehydes. These display aggregation caused quenching (ACQ, 1) and aggregation induced emission enhancement (AIEE, 2 and 3) depending on the position of azo relative to the phenolic hydroxyl group. An intriguing time dependent morphological transition from nanospheres to ordered nanorods and subsequent emission changes in AIEE active azo-phenol BODIPYs have been successfully realized by time dependent fluorescence, scanning electron (SEM), transmission electron (TEM) and fluorescence optical microscopy (FOM) studies. The existence of one-dimensional (1D) nanorods as ultimate species in these compounds (2-3) has been supported by crystal packing patterns. Diverse aggregated forms and hierarchical nanostructures have been related to variable extents of fluorescence enhancement. The plausible charge transfer process and its role in AIEE have been supported by DFT studies.
Collapse
Affiliation(s)
- Rajendra Prasad Paitandi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi - 221 005, India.
| | | | | | | | | |
Collapse
|
14
|
Gupta G, Das A, Lee J, Mandal N, Lee CY. Self-Assembled BODIPY-Based Iridium Metallarectangles: Cytotoxicity and Propensity to Bind Biomolecules. Chempluschem 2018; 83:339-347. [PMID: 31957364 DOI: 10.1002/cplu.201800035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 12/18/2022]
Abstract
A new 4-ethynylpyridine 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based ligand L, which was synthesized by means of the Sonogashira coupling method, was used to obtain two new [2+2] iridium-based metallarectangles, 3 and 4. Ligand L and metallarectangles 3 and 4 were fully characterized through various analytical techniques. The structure of rectangle 4 was further confirmed by single-crystal X-ray diffraction analysis, which showed the formation of an expected [2+2] supramolecule, in which the iridium metal centers were bridged with ligand L to form the desired metallarectangle 4. In the context of the growing biological interest in metallarectangles, rectangle 4 was found to be highly active against two types of cancer cells, with IC50 values almost threefold superior to those of cisplatin. Both 3 and 4 showed dose-dependent abilities to bind bovine serum albumin and salmon sperm DNA; this indicated their tendency to interact with such biomolecules as a potential mode of action.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata, West Bengal, 700054, India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| |
Collapse
|
15
|
Sonawane AD, Garud DR, Udagawa T, Kubota Y, Koketsu M. Synthesis of thieno[2,3-c]acridine and furo[2,3-c]acridine derivatives via an iodocyclization reaction and their fluorescence properties and DFT mechanistic studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj03511c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this paper, we report the novel synthesis of thieno[2,3-c]acridine and furo[2,3-c]acridine derivatives via intramolecular iodocyclization reaction. The thieno[2,3-c]acridine derivatives exhibited blue fluorescence in hexane.
Collapse
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Dinesh R. Garud
- Department of Chemistry
- Sir Parashurambhau College
- Pune 411030
- India
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
16
|
Paitandi RP, Mukhopadhyay S, Singh RS, Sharma V, Mobin SM, Pandey DS. Anticancer Activity of Iridium(III) Complexes Based on a Pyrazole-Appended Quinoline-Based BODIPY. Inorg Chem 2017; 56:12232-12247. [DOI: 10.1021/acs.inorgchem.7b01693] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rajendra Prasad Paitandi
- Department of Chemistry,
Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sujay Mukhopadhyay
- Department of Chemistry,
Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Roop Shikha Singh
- Department of Chemistry,
Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | | | | | - Daya Shankar Pandey
- Department of Chemistry,
Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
17
|
Saini A, Thomas KRJ, Sachdev A, Gopinath P. Photophysics, Electrochemistry, Morphology, and Bioimaging Applications of New 1,8-Naphthalimide Derivatives Containing Different Chromophores. Chem Asian J 2017; 12:2612-2622. [DOI: 10.1002/asia.201700968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Saini
- Organic Materials Chemistry, Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247 667 India
| | - K. R. Justin Thomas
- Organic Materials Chemistry, Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247 667 India
| | - Abhay Sachdev
- Centre of Nanotechnology and Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee 247 667 India
| | - Packirisamy Gopinath
- Centre of Nanotechnology and Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee 247 667 India
| |
Collapse
|
18
|
Gupta G, Das A, Park KC, Tron A, Kim H, Mun J, Mandal N, Chi KW, Lee CY. Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization. Inorg Chem 2017; 56:4616-4622. [PMID: 28383898 DOI: 10.1021/acs.inorgchem.7b00260] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four new palladium metal supramolecules with triangular/square architectures derived from boron dipyrromethane (BODIPY) ligands were synthesized by self-assembly and fully characterized by 1H and 31P NMR, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. These supramolecules were more cytotoxic to brain cancer (glioblastoma) cells than to normal lung fibroblasts. Their cytotoxicity to the glioblastoma cells was higher than that of a benchmark metal-based chemotherapy drug, cisplatin. The characteristic green fluorescence of the BODIPY ligands in these supramolecules permitted their intracellular visualization using confocal microscopy, and the compounds were localized in the cytoplasm and on the plasma membrane.
Collapse
Affiliation(s)
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute , P-1/12, CIT Scheme-VII M, Kolkata 700054, India
| | | | | | - Hyunuk Kim
- Convergence Materials Laboratory, Korea Institute of Energy Research , Daejeon 305-343, Republic of Korea
| | | | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute , P-1/12, CIT Scheme-VII M, Kolkata 700054, India
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan , Ulsan 680-749, Republic of Korea
| | | |
Collapse
|
19
|
Fang W, Zhang Y, Zhang G, Kong L, Yang L, Yang J. Multi-stimuli-responsive fluorescence of a highly emissive difluoroboron complex in both solution and solid states. CrystEngComm 2017. [DOI: 10.1039/c6ce02376b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Singh VK, Prasad R, Koch B, Hasan SH, Dubey M. Pyrene–fluorescein-based colour-tunable AIE-active hybrid fluorophore material for potential live cell imaging applications. NEW J CHEM 2017. [DOI: 10.1039/c7nj00106a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel hybrid fluorophore (FHPY) has been synthesized based on two standard fluorescent hydrophobic–hydrophilic molecules, viz. pyrene and fluorescein, with an objective to tune the AIE along with the morphology and live cell imaging.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Ritika Prasad
- Department of Zoology
- Institute of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Biplob Koch
- Department of Zoology
- Institute of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Syed Hadi Hasan
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Mrigendra Dubey
- Department of Chemistry
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
21
|
Lei L, Ma H, Yang M, Qin Y, Ma Y, Wang T, Yang Y, Lei Z, Lu D, Guan X. Fluorophore-functionalized graphene oxide with application in cell imaging. NEW J CHEM 2017. [DOI: 10.1039/c7nj02416a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent carbon material with excellent fluorescence performances and a nearly nucleus-staining was prepared by a simple method.
Collapse
|
22
|
Mukhopadhyay S, Singh RS, Biswas A, Maiti B, Pandey DS. Molecular and Nanoaggregation in Cyclometalated Iridium(III) Complexes through Structural Modification. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sujay Mukhopadhyay
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi U.P. India
| | - Roop Shikha Singh
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi U.P. India
| | - Arnab Biswas
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi U.P. India
| | - Biswajit Maiti
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi U.P. India
| | - Daya Shankar Pandey
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi U.P. India
| |
Collapse
|
23
|
Chang ZF, Jing LM, Chen B, Zhang M, Cai X, Liu JJ, Ye YC, Lou X, Zhao Z, Liu B, Wang JL, Tang BZ. Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups. Chem Sci 2016; 7:4527-4536. [PMID: 30155099 PMCID: PMC6018563 DOI: 10.1039/c5sc04920b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 12/14/2022] Open
Abstract
In this work, we report the synthesis of a family of donor-acceptor (D-A) π-conjugated aggregation-induced red emission materials (TPABT, DTPABT, TPEBT and DTPEBT) with the same core 2,2-(2,2-diphenylethene-1,1-diyl)dithiophene (DPDT) and different amounts and different strengths of electron-donating terminal moieties. Interestingly, TPABT and TPEBT, which have asymmetric structures, give obviously higher solid fluorescence quantum efficiencies in comparison with those of the corresponding symmetric structures, DTPABT and DTPEBT, respectively. In particular, the thin film of TPEBT exhibited the highest fluorescence quantum efficiency of ca. 38% with the highest αAIE. Moreover, TPEBT and DTPEBT with TPE groups showed two-photon absorption cross-sections of (δ) 1.75 × 103 GM and 1.94 × 103 GM at 780 nm, respectively, which are obviously higher than the other two red fluorescent materials with triphenylamine groups. Then, the one-photon and two-photon fluorescence imaging of MCF-7 breast cancer cells and Hela cells, and cytotoxicity experiments, were carried out with these red fluorescent materials. Intense intracellular red fluorescence was observed for all the molecules using one-photon excitation and for TPABT using two-photon excitation in the cell cytoplasm. Finally, TPEBT is biocompatible and functions well in mouse brain blood vascular visualization. It is indicated that these materials can be used as a specific stain fluorescent probe for live cell imaging.
Collapse
Affiliation(s)
- Zheng-Feng Chang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry , Beijing Institute of Technology , Beijing , China .
| | - Ling-Min Jing
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry , Beijing Institute of Technology , Beijing , China .
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou , China .
| | - Mengshi Zhang
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan , China .
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Jun-Jie Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry , Beijing Institute of Technology , Beijing , China .
| | - Yan-Chun Ye
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry , Beijing Institute of Technology , Beijing , China .
| | - Xiaoding Lou
- School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan , China .
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou , China .
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Singapore 117585
| | - Jin-Liang Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry , Beijing Institute of Technology , Beijing , China .
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou , China .
| |
Collapse
|
24
|
Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, Tang BZ. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun (Camb) 2016; 52:7288-91. [PMID: 27180866 DOI: 10.1039/c6cc03415b] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An AIE-based fluorescent nanoprobe (MTPE-M) has been developed and used for ratiometric detection of hypochlorite with high selectivity and sensitivity. More importantly, its application in live cells and zebrafish for ratiometric imaging of endogenous ClO(-) has also been achieved.
Collapse
Affiliation(s)
- Yong Huang
- College of Materials Science & Engineering, State Key Lab of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Gupta G, Das A, Ghate NB, Kim T, Ryu JY, Lee J, Mandal N, Lee CY. Novel BODIPY-based Ru(ii) and Ir(iii) metalla-rectangles: cellular localization of compounds and their antiproliferative activities. Chem Commun (Camb) 2016; 52:4274-7. [DOI: 10.1039/c6cc00046k] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and antiproliferative activities of novel BODIPY-based Ru and Ir rectangles are presented.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering
- Incheon National University
- Incheon 406-772
- Republic of Korea
| | - Abhishek Das
- Division of Molecular Medicine
- Bose Institute
- Kolkata-700054
- India
| | | | - Takhyeon Kim
- Department of Energy and Chemical Engineering
- Incheon National University
- Incheon 406-772
- Republic of Korea
| | - Ji Yeon Ryu
- Department of Chemistry
- Chonnam National University
- Gwangju 500-757
- Republic of Korea
| | - Junseong Lee
- Department of Chemistry
- Chonnam National University
- Gwangju 500-757
- Republic of Korea
| | | | - Chang Yeon Lee
- Department of Energy and Chemical Engineering
- Incheon National University
- Incheon 406-772
- Republic of Korea
| |
Collapse
|
26
|
Li Q, Qian Y. Aggregation-induced emission enhancement and cell imaging of a novel (carbazol-N-yl)triphenylamine–BODIPY. NEW J CHEM 2016. [DOI: 10.1039/c6nj01495j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The AIEE fluorogen BCPA–BODIPY emits strong red fluorescence and shows a good uptake by MCF-7 cells.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| | - Ying Qian
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
27
|
Singh RS, Mukhopadhyay S, Biswas A, Pandey DS. Exquisite 1D Assemblies Arising from Rationally Designed Asymmetric Donor-Acceptor Architectures Exhibiting Aggregation-Induced Emission as a Function of Auxiliary Acceptor Strength. Chemistry 2015; 22:753-63. [DOI: 10.1002/chem.201503570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 11/05/2022]
|
28
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Chua MH, Huang KW, Xu J, Wu J. Unusual Intramolecular Hydrogen Transfer in 3,5-Di(triphenylethylenyl) BODIPY Synthesis and 1,2-Migratory Shift in Subsequent Scholl Type Reaction. Org Lett 2015; 17:4168-71. [DOI: 10.1021/acs.orglett.5b01916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ming Hui Chua
- Institute
of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kuo-Wei Huang
- Division
of Physical and Life Sciences and Engineering and KAUST Catalysis
Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jianwei Xu
- Institute
of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
| | - Jishan Wu
- Institute
of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore, 117602, Singapore
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
30
|
Chua MH, Ni Y, Garai M, Zheng B, Huang KW, Xu QH, Xu J, Wu J. Towardsmeso-Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions. Chem Asian J 2015; 10:1631-4. [DOI: 10.1002/asia.201500420] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering; A*STAR; 3 Research Link 117602 Singapore Singapore
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Monalisa Garai
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Bin Zheng
- KAUST Catalysis Center and Division of Physical Sciences&Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Sciences&Engineering; King Abdullah University of Science and Technology; Thuwal 23955-6900 Saudi Arabia
| | - Qing-Hua Xu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering; A*STAR; 3 Research Link 117602 Singapore Singapore
| | - Jishan Wu
- Institute of Materials Research and Engineering; A*STAR; 3 Research Link 117602 Singapore Singapore
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
31
|
Wu Y, Huang S, Zeng F, Wang J, Yu C, Huang J, Xie H, Wu S. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem Commun (Camb) 2015; 51:12791-4. [DOI: 10.1039/c5cc04771d] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A ratiometric fluorescence CaE assay was developed with AIE dots as donors in the FRET process for the first time, which is capable of detecting esterase in human serum.
Collapse
Affiliation(s)
- Yinglong Wu
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuailing Huang
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Fang Zeng
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jun Wang
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Changmin Yu
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Jing Huang
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Huiting Xie
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Shuizhu Wu
- College of Materials Science and Engineering
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|