1
|
Liu G, Pan R, Wei Y, Tao L. The Hantzsch Reaction in Polymer Chemistry: From Synthetic Methods to Applications. Macromol Rapid Commun 2020; 42:e2000459. [PMID: 33006198 DOI: 10.1002/marc.202000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruihao Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Sadighi A, Motevalizadeh SF, Hosseini M, Ramazani A, Gorgannezhad L, Nadri H, Deiham B, Ganjali MR, Shafiee A, Faramarzi MA, Khoobi M. Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis. Appl Biochem Biotechnol 2017; 182:1371-1389. [DOI: 10.1007/s12010-017-2404-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
|
4
|
Zheng H, Song N, Li X, Jia Q. Anchoring β-cyclodextrin modified lysine to polymer monolith with biotin: specific capture of plasminogen. Analyst 2017; 142:4773-4781. [PMID: 29160868 DOI: 10.1039/c7an01436h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A biotin-Lys-CD based monolithic material was employed for the specific capture of plasminogen.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Naizhong Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xiqian Li
- China-Japan Hospital of Jilin University
- Changchun 130033
- China
| | - Qiong Jia
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
5
|
Wang X, Hu H, Wang W, Lee KI, Gao C, He L, Wang Y, Lai C, Fei B, Xin JH. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release. Colloids Surf B Biointerfaces 2016; 143:342-351. [PMID: 27022875 DOI: 10.1016/j.colsurfb.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022]
Abstract
Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.
Collapse
Affiliation(s)
- Xiaowen Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Huawen Hu
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wenyi Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka I Lee
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang Gao
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liang He
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuanfeng Wang
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chuilin Lai
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bin Fei
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - John H Xin
- Nanotechnology Center, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
6
|
Zhang Q, Zhao Y, Yang B, Fu C, Zhao L, Wang X, Wei Y, Tao L. Lighting up the PEGylation agents via the Hantzsch reaction. Polym Chem 2016. [DOI: 10.1039/c5py01624j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PEG chain ends have been modified with a protein reactive-group through the Hantzsch reaction to in situ achieve fluorescent PEGylation agents for protein conjugation.
Collapse
Affiliation(s)
- Qingdong Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lingyun Zhao
- Key Laboratory of Advanced Materials
- Ministry of Education
- School of Material Science & Engineering
- Tsinghua University
- Beijing
| | - Xing Wang
- The State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
7
|
Tang Z, Luan Y, Li D, Du H, Haddleton DM, Chen H. Surface immobilization of a protease through an inhibitor-derived affinity ligand: a bioactive surface with defensive properties against an inhibitor. Chem Commun (Camb) 2015; 51:14263-6. [DOI: 10.1039/c5cc05652g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface immobilization of a protease through its inhibitor-derived peptide was shown to be advantageous in retaining the enzymatic activity of the protease and protecting the protease from being inhibited by its inhibitor.
Collapse
Affiliation(s)
- Zengchao Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yafei Luan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Dan Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Hui Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | | | - Hong Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| |
Collapse
|