1
|
Lee DG, Min YH, Byun JY, Shin YB. Small Molecule Detection with Ligation-Dependent Light-Up Aptamer Transcriptional Amplification. ACS APPLIED BIO MATERIALS 2024; 7:6865-6872. [PMID: 39315418 DOI: 10.1021/acsabm.4c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ATP and NAD+ are small biomolecules that participate in a variety of physiological functions and are considered as potential biomarkers for disease diagnosis. In this study, we developed a ligation-dependent light-up aptamer transcriptional amplification assay for the sensitive and selective detection of ATP and NAD+. This assay relies on a specific DNA ligase that catalyzes the ligation of a nicked DNA template in the presence of a specific small molecule. We prepared a nicked template consisting of a duplex fragment with an overhang for the T7 promoter region and a single-stranded DNA with a complementary overhang sequence for the Broccoli aptamer. The nicked template was connected using a DNA ligase in the presence of a specific small molecule. The ligation product was subjected to in vitro transcription to amplify the light-up aptamer-mediated fluorescence signals. By integrating the target-dependent ligation and transcription amplification, significant signal amplification was achieved with 5.9 and 142 pM detection limits for ATP and NAD+, respectively. Moreover, good selectivity to discriminate between the target and its analogues was also realized. The application of this method to biological samples was evaluated using human serum and exhibited excellent recovery values.
Collapse
Affiliation(s)
- Deok-Gyu Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | - Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wen ZB, Liang WB, Zhuo Y, Xiong CY, Zheng YN, Yuan R, Chai YQ. An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection. Chem Commun (Camb) 2018; 54:10897-10900. [PMID: 30206633 DOI: 10.1039/c8cc05525d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, an adenosine triphosphate (ATP)-fueled nucleic acid signal amplification strategy based on toehold-mediated strand displacement (TMSD) and fluorescence resonance energy transfer (FRET) was proposed for highly sensitive detection of microRNA-21. More importantly, the target microRNA-21 could be regenerated with ATP as the fuel rather than a nucleotide segment in conventional approaches, which made the proposed strategy simple and efficient due to the high affinity and strength of the aptamer-target interaction.
Collapse
Affiliation(s)
- Zhi-Bin Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Song Q, Wang R, Sun F, Chen H, Wang Z, Na N, Ouyang J. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron 2016; 87:760-763. [PMID: 27649332 DOI: 10.1016/j.bios.2016.09.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/21/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Owing to their promising advantages in biochemical analysis, aptamer-based sensing systems for the fluorescence detection of important biomolecules are being extensively investigated. Herein, we propose a turn-on fluorescent aptasensor for label-free detection of adenosine triphosphate (ATP) by utilizing the in situ formation of copper nanoparticles (CuNPs) and the specific digestion capability of exonuclease I (Exo I). In this assay, the addition of ATP can effectively hinder the digestion of aptamer-derived oligonucleotides due to the G-quadruplex structure. Accordingly, the remaining poly thymine at 5'-terminus of substrate DNA can serve as an efficient template for red-emitting fluorescent CuNPs with a Mega-Stokes shifting in buffered solution, which can be used to evaluate the concentration of ATP. This method is cost-effective and facile, because it avoids the use of traditional dye-labeled DNA strands and complex operation steps. Under optimized conditions, this method achieves a selective response for ATP with a detection limit of 93nM, and exhibits a good detection performance in biological samples.
Collapse
Affiliation(s)
- Quanwei Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing 102206, China
| | - Ruihua Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Feifei Sun
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China; CNPC Research Institute of Safety and Environment Technology, Beijing 102206, China
| | - Zoumengke Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Shamsipur M, Farzin L, Tabrizi MA, Shanehsaz M. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1354-60. [PMID: 27612836 DOI: 10.1016/j.msec.2016.08.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/01/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022]
Abstract
A "signal off" voltammetric aptasensor was developed for the sensitive and selective detection of ultra-low levels of adenosine triphosphate (ATP). For this purpose, a new strategy based on the principle of recognition-induced switching of aptamers from DNA/DNA duplex to DNA/target complex was designed using thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) as the signal amplifying nano-platforms. Owing to the small size, high surface-to-volume ratio and good conductivity, quantum dots were immobilized on the electrode surface for signal amplification. In this work, methylene blue (MB) adsorbed to DNA was used as a sensitive redox reporter. The intensity of voltammetric signal of MB was found to decrease linearly upon ATP addition over a concentration range of 0.1nM to 1.6μM with a correlation coefficient of 0.9924. Under optimized conditions, the aptasensor was able to selectively detect ATP with a limit of detection of 45pM at 3σ. The results also demonstrated that the QDs-based amplification strategy could be feasible for ATP assay and presented a potential universal method for other small biomolecular aptasensors.
Collapse
Affiliation(s)
- Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 67149-67346, Kermanshah, Iran.
| | - Leila Farzin
- Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, P.O. Box 14174-66191, Tehran, Iran
| | - Mahmoud Amouzadeh Tabrizi
- Research Center for Science and Technology in Medicine,Tehran University of Medical Sciences, P.O. Box 14197-33131, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, P.O. Box 14768-44949, Tehran, Iran
| |
Collapse
|