1
|
Huang W, Wang L, Long D, Liu X. Colorimetric determination and recycling of gold(III) ions using label-free plasmonic H 0.3MoO 3 nanoparticles. Mikrochim Acta 2023; 190:245. [PMID: 37249686 DOI: 10.1007/s00604-023-05826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
A low-cost and environment-friendly sensor was developed for visual determination of gold ions (Au3+) by using label-free hydrogen doped molybdenum oxide (H0.3MoO3) nanoparticles as ratio probes. According to the characterization results of transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectra, Au3+ is easily reduced to red Au nanoparticles (AuNPs) by blue H0.3MoO3 nanoparticles. The color change of the solution depends on the concentration of Au3+, which makes it possible to detect Au3+ visually. Under optimal experimental conditions of pH 4.6, H0.3MoO3 nanoparticles concentration of 0.075 mg·mL-1, and reaction time of 7 min, the sensor offers a satisfactory determination range from 0.5 to 70 μM and a good determination limit of 0.45 μM for Au3+. The concentration of Au3+ as low as 10 μM can be directly distinguished through the naked eye. Additionally, the colorimetric probe has also been proved applicable in environmental water samples. More importantly, the resulting AuNPs have good stability and oxidase-like activity, which may be directly used in sensing, catalysis, energy, and other fields.
Collapse
Affiliation(s)
- Wei Huang
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China.
| | - Long Wang
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Dengying Long
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China
| | - Xiaonan Liu
- National Circular Economy Engineering Laboratory, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, P. R. China.
| |
Collapse
|
2
|
Abstract
Propargylamine is a chemical moiety whose properties have made it a widely distributed group within the fields of medicinal chemistry and chemical biology. Its particular reactivity has traditionally popularized the preparation of propargylamine derivatives using a large variety of synthetic strategies, which have facilitated the access to these compounds for the study of their biomedical potential. This review comprehensively covers and analyzes the applications that propargylamine-based derivatives have achieved in the drug discovery field, both from a medicinal chemistry perspective and from a chemical biology-oriented approach. The principal therapeutic fields where propargylamine-based compounds have made an impact are identified, and a discussion of their influence and growing potential is included.
Collapse
|
3
|
Hu J, Yu X, Zhuang X, Sun Y, Wang J, Ren H, Zhang S, Zhang Y, Qiu H, Hu Y. Construction of an enzyme-free biosensor utilizing CuO nanoparticles enriched in DNA polymer to catalyze a click chemistry reaction for SERS detection of the p53 gene. Anal Chim Acta 2022; 1222:339958. [DOI: 10.1016/j.aca.2022.339958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/01/2022]
|
4
|
Muyizere T, Zheng Y, Liu H, Zhao J, Li J, Lu X, Austin DE, Zhang Z. Metal salt assisted electrospray ionization mass spectrometry for the soft ionization of GAP polymers in negative ion mode. Analyst 2019; 145:34-45. [PMID: 31755893 DOI: 10.1039/c9an01887e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycidyl azide polymers (GAP) are one of the most important energetic polymers, but it is still a challenge to elucidate their structures using mass spectrometry due to their fragility upon ionization. Herein we developed a soft metal salt assisted electrospray ionization (MSAESI) to characterize directly GAP polymers using mass spectrometry. This technique combines paper spray ionization and the complexing effect of anions from metal salts with GAP in the negative ion mode to softly ionize GAP polymers prior to mass spectrometry analysis. The effects of experimental parameters (e.g., ion mode, applied voltage, and type and concentration of metal salts) have been investigated in detail. In contrast to the positive ion mode, a softer ionization was observed for GAP polymers when the negative ion mode was applied. The radius and average charge of cations and anions in metal salts were found to play crucial roles in determining the performance of the MSAESI analysis of GAP. For a given charge number, a smaller radius of cations favored the soft ionization of GAP polymers (e.g., Na+ > K+ > Rb+), whereas a larger radius of anions led to a preferred performance (e.g., F- < Cl- < Br- < I-) due to variation in dissolution ability. For anions with multiple charges, the ones with fewer charges gave a more favorable ionization to the GAP sample because of their better complexing to GAP molecules than those with more charges in the structure of anions (e.g., NO3- > SO42- > PO43-). According to the experimental observation and evidence from mass spectrometry, we proposed the plausible electrospray mechanisms of MSAESI for GAP analysis with the involvement of metal salts. Moreover, the developed protocol has been applied successfully to the analysis of various GAP samples, and works for other types of sources such as nanoelectrospray ionization.
Collapse
Affiliation(s)
- Theoneste Muyizere
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jarosz T, Stolarczyk A, Wawrzkiewicz-Jalowiecka A, Pawlus K, Miszczyszyn K. Glycidyl Azide Polymer and its Derivatives-Versatile Binders for Explosives and Pyrotechnics: Tutorial Review of Recent Progress. Molecules 2019; 24:E4475. [PMID: 31817642 PMCID: PMC6943510 DOI: 10.3390/molecules24244475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
Glycidyl azide polymer (GAP), an energetic binder, is the focus of this review. We briefly introduce the key properties of this well-known polymer, the difference between energetic and non-energetic binders in propellant and explosive formulations, the fundamentals for producing GAP and its copolymers, as well as for curing GAP using different types of curing agents. We use recent works as examples to illustrate the general approaches to curing GAP and its derivatives, while indicating a number of recently investigated curing agents. Next, we demonstrate that the properties of GAP can be modified either through internal (structural) alterations or through the introduction of external (plasticizers) additives and provide a summary of recent progress in this area, tying it in with studies on the properties of such modifications of GAP. Further on, we discuss relevant works dedicated to the applications of GAP as a binder for propellants and plastic-bonded explosives. Lastly, we indicate other, emerging applications of GAP and provide a summary of its mechanical and energetic properties.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland
| | | | | | | |
Collapse
|
6
|
Chen J, Chen X, Huang Q, Li W, Yu Q, Zhu L, Zhu T, Liu S, Chi Z. Amphiphilic Polymer-Mediated Aggregation-Induced Emission Nanoparticles for Highly Sensitive Organophosphorus Pesticide Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32689-32696. [PMID: 31429534 DOI: 10.1021/acsami.9b10237] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biosensing applications require signal reporters to be sufficiently stable and biosafe as well as highly efficient. Aggregation-induced emission (AIE) nanoparticles have proven to be capable of cell-imaging and cancer therapy; however, realizing sensitive detection of biomolecules remains a great challenge because of their instability, biotoxicity, and lack of modifiable functional groups. Herein, we report a self-assembling strategy to fabricate AIE nanoparticles (PTDNPs) through the dispersion of amphiphilic polymers (PTDs) in phosphate-buffered saline. The PTDs were prepared through radical copolymerization of N-(1,2,2-triphenylvinyl)-4-acetylaniline and dimethyl diallyl ammonium chloride. We found that the particle size, morphology, functional groups, and fluorescence property of PTDNPs can be fine-tuned. Further, PTDNPs-0.10 were chosen as signal reporters to detect organophosphorus pesticides (OPs) with the aid of gold nanoparticles. Their sensing performance on OPs is superior to that using C-dot/quantum dot/rhodamine B as the signal reporter. This study not only provides new possibilities to fabricate novel AIE nanoparticles with exceptional properties, but also facilitates the AIE nanoparticle's application for target analyte biosensing.
Collapse
Affiliation(s)
- Jianling Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Qiuyi Huang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenlang Li
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Qiaoxi Yu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Longji Zhu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Tianwen Zhu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High Performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
7
|
Chen H, Sun Y, Li Y, Zhao J, Cao Y. Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Mikrochim Acta 2018; 185:451. [PMID: 30209641 DOI: 10.1007/s00604-018-2992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
The authors describe a significantly improved colorimetric nanoprobe for the determination of transcription factors (TFs). It is making use of click-mediated growth of gold nanoparticles (AuNPs) to amplify the signal-to-noise ratio. Hypoxia-inducible factor-1 (HIF-1) is an important TF that acts as a mediator of cell response to hypoxia. So, the detection of HIF-1 was chosen as the model analyte. Specifically, target HIF-1 is designed to bind to the hypoxia response element within DNA duplex. The click chemistry between the DNA duplex and alkynyl-functionalized AuNPs (AF-AuNPs) is then inhibited because of significant steric hindrance. As a result, the AF-AuNPs grow into larger-sized highly-aggregated irregular nanostructures, which in turn enable colorimetric determination. The ratio of absorbances at 620 and 560 nm increases in the 0.5 to 10 nM HIF-1 concentration range, and the detection limit is 0.27 nM. This is better by a factor of 100 than that of aggregation-based colorimetric assays. The nanoprobe is selective and can be used in complex samples. Conceivably, it may also be extended to the determination of other TFs by simply changing the used DNA duplex. Graphical abstract Schematic of a nanoprobe for detecting hypoxia-inducible factor-1 (HIF-1). Three concepts are involved: the binding of HIF-1 and hypoxia response element, the Cu+-catalyzed click chemistry between P1/P2 duplex and alkynyl-functionalized AuNPs (AF-AuNPs), and the AuNPs growth with hydroxylamine and HAuCl4.
Collapse
Affiliation(s)
- Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yan Sun
- Department of Endocrinology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Zhang G, Zhang T, Li J, Luo Y. Core-shell type multi-arm azide polymers based on hyperbranched copolyether as potential energetic materials in solid propellants. POLYM INT 2017. [DOI: 10.1002/pi.5470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangpu Zhang
- School of Materials Science and Engineering; Beijing Institute of Technology; Beijing China
| | - Tianfu Zhang
- School of Materials Science and Engineering; Beijing Institute of Technology; Beijing China
| | - Jinqing Li
- School of Materials Science and Engineering; Beijing Institute of Technology; Beijing China
| | - Yunjun Luo
- School of Materials Science and Engineering; Beijing Institute of Technology; Beijing China
| |
Collapse
|
9
|
He Y, Wang L. Base-driven sunlight oxidation of silver nanoprisms for label-free visual colorimetric detection of hexahydro-1,3,5-trinitro-1,3,5-triazine explosive. JOURNAL OF HAZARDOUS MATERIALS 2017; 329:249-254. [PMID: 28183013 DOI: 10.1016/j.jhazmat.2017.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Here we report a label-free method for visual colorimetric detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (HTT) explosive based on base-driven sunlight oxidation of silver nanoprisms (AgNPRs). Under natural sunlight illumination, the surface plasmon of AgNPRs is excited, which populates O2 antibonding orbitals to generate negative-ion state (O2-). The resultant O2- with a strong oxidation activity can etch AgNPRs to smaller nanodisks with the aid of NaOH aqueous solution, leading to a blue shift of the absorption peak and color change from blue to pink. However, when HTT is introduced, the resultant O2- will be consumed by the nitrite and formaldehyde that are produced from the alkaline hydrolysis of HTT. Under this condition, the etching of AgNPRs does not occur, and the detection solution remains blue. This assay can sensitively detect as low as 1nM HTT, a level which is three orders of magnitude lower than that of gold nanoparticle-based colorimetric assays (2.6μM), and shows linearity in the range of 0.003-3.3μM. The lowest detectable concentration with the naked eye is 0.1μM. Additionally, the present assay exhibits good selectivity, and can be applied in the detection of HTT in natural water and soil samples with recoveries ranging from 90% to 100%.
Collapse
Affiliation(s)
- Yi He
- Sichuan Co-Innovation Center for New Energetic Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - Li Wang
- Sichuan Co-Innovation Center for New Energetic Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
10
|
Adhikari S, Guria S, Ghosh A, Pal A, Das D. A curcumin derived probe for colorimetric detection of azide ions in water. NEW J CHEM 2017. [DOI: 10.1039/c7nj03266h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A curcumin based probe (CUC-P) having an active alkyne moiety has been synthesised for selective detection of azide (N3−) ions in aqueous medium.
Collapse
Affiliation(s)
- Susanta Adhikari
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | - Subhajit Guria
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | - Avijit Ghosh
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | - Abhishek Pal
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
- Department of Chemistry
| | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan 713 104
- India
| |
Collapse
|
11
|
Gatselou V, Christodouleas DC, Kouloumpis A, Gournis D, Giokas DL. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles. Anal Chim Acta 2016; 932:80-7. [DOI: 10.1016/j.aca.2016.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
12
|
Saad A, Abderrabba M, Chehimi MM. X-ray induced degradation of surface bound azido groups during XPS analysis. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ali Saad
- Laboratory of Materials, Molecules and Applications, IPEST; University of Carthage; Sidi Bou Said road, B.P. 51 2070 La Marsa Tunisia
- Faculté des Sciences de Tunis; Université El Manar; PO Box 248, El Manar II 2092 Tunis Tunisia
| | - Manef Abderrabba
- Laboratory of Materials, Molecules and Applications, IPEST; University of Carthage; Sidi Bou Said road, B.P. 51 2070 La Marsa Tunisia
| | - Mohamed M. Chehimi
- Université Paris Est; ICMPE (UMR 7182), CNRS, UPEC; 2-8 rue Henri Dunant 94320 Thiais France
| |
Collapse
|
13
|
He Y, Cheng Y. A visual assay and spectrophotometric determination of LLM-105 explosive using detection of gold nanoparticle aggregation at two pH values. Anal Bioanal Chem 2016; 408:5551-6. [PMID: 27230624 DOI: 10.1007/s00216-016-9652-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion.
Collapse
Affiliation(s)
- Yi He
- Co-Innovation Center for New Energetic Materials, School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Yang Cheng
- Co-Innovation Center for New Energetic Materials, School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
14
|
Guerra S, Nguyen TLA, Furrer J, Nierengarten JF, Barberá J, Deschenaux R. Liquid-Crystalline Dendrimers Designed by Click Chemistry. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sebastiano Guerra
- Institut
de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Thi Le Anh Nguyen
- Institut
de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Julien Furrer
- Institut
de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Jean-François Nierengarten
- Laboratoire
de Chimie des Matériaux Moléculaires, Université
de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg, Cedex
2, France
| | - Joaquín Barberá
- Departamento
de Química Orgánica, Facultad de Ciencias-Instituto
de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Robert Deschenaux
- Institut
de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|