1
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Zhao F, Guan Y, Su F, Du Z, Wen S, Zhang L, Jin D. Lanthanide-Complex-Enhanced Bioorthogonal Branched DNA Amplification. Anal Chem 2024; 96:1556-1564. [PMID: 38214216 DOI: 10.1021/acs.analchem.3c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used technique for detecting intracellular nucleic acids. However, its effectiveness in detecting low-copy nucleic acids is limited due to its low fluorescence intensity and background autofluorescence. To address these challenges, we present here an approach of lanthanide-complex-enhanced bioorthogonal-branched DNA amplification (LEBODA) with high sensitivity for in situ nuclear acid detection in single cells. The approach capitalizes on two levels of signal amplification. First, it utilizes click chemistry to directly link a substantial number of bridge probes to target-recognizing probes, providing an initial boost in signal intensity. Second, it incorporates high-density lanthanide complexes into each bridge probe, enabling secondary amplifications. Compared to the traditional "double Z" probes used in the RNAscope method, LEBODA exhibits 4 times the single enhancement for RNA detection signal with the click chemistry approach. Using SARS-CoV-2 pseudovirus-infected HeLa cells, we demonstrate the superiority in the detection of viral-infected cells in rare populations as low as 20% infectious rate. More encouragingly, the LEBODA approach can be adapted for DNA-FISH and single-molecule RNA-FISH, as well as other hybridization-based signal amplification methods. This adaptability broadens the potential applications of LEBODA in the sensitive detection of biomolecules, indicating promising prospects for future research and practical use.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Guan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Zhongbo Du
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Dayong Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| |
Collapse
|
3
|
Verkhoturov DS, Eller MJ, Han YD, Crulhas B, Verkhoturov SV, Revzin A, Schweikert EA. New Methodology for Accurate Determination of Molecular Co-localization at the Nanoscale. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5626-5632. [PMID: 35465673 DOI: 10.1021/acs.langmuir.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new methodology using nanoparticle projectile secondary ion mass spectrometry was developed to identify statistically significant co-localization of tagged proteins versus random aggregations at the nanoscale. The custom instrument was run in the unique event-by-event bombardment detection mode with 1040 keV Au28008+ individual projectiles each probing an area with a diameter of ∼20 nm. In a model experiment, antibodies tagged with fluorine, iodine, and bromine were attached on a silicon wafer in a 1:1:1 ratio. To determine whether the three different antibodies were homogeneously distributed at the nanoscale or if there were fluctuations due to the slightly different physical properties of the tags, a "co-localization factor" was introduced. It is shown for the first time that the differences in the hydrophobicity of the tags induced fluctuations, causing differential attachment of the tags at the nanoscale. When tags with the same physical and chemical properties were used, the analysis of co-localization factors shows that the attachment became random.
Collapse
Affiliation(s)
- D S Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - M J Eller
- Department of Chemistry and Biochemistry, California State University, Northridge, California 91330, United States
| | - Y D Han
- Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - B Crulhas
- Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - S V Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - A Revzin
- Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - E A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Verkhoturov DS, Crulhas BP, Eller MJ, Han YD, Verkhoturov SV, Bisrat Y, Revzin A, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Analysis of Extracellular Vesicles. Anal Chem 2021; 93:7481-7490. [PMID: 33988360 DOI: 10.1021/acs.analchem.1c00689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a technique based on secondary ion mass spectrometry with nanoprojectiles (NP-SIMS) for determining the protein content of extracellular vesicles, EVs, via tagged antibodies. The technique uses individual gold nanoprojectiles (e.g., Au4004+ and Au28008+), separated in time and space, to bombard a surface. For each projectile impact (10-20 nm in diameter), the co-emitted molecules are mass analyzed and recorded as an individual mass spectrum. Examining these individual mass spectra for co-localized species allows for nanoscale mass spectrometry to be performed. The high lateral resolution of this technique is well suited for analyzing nano-objects. SIMS is generally limited to analyzing small molecules (below ∼1500 Da); therefore, we evaluated three molecules (eosin, erythrosine, and BHHTEGST) as prospective mass spectrometry tags. We tested these on a model surface comprising a mixture of all three tags conjugated to antibodies and found that NP-SIMS could detect all three tags from a single projectile impact. Applying the method, we tagged two surface proteins common in urinary EVs, CD63 and CD81, with anti-CD63-erythrosine and anti-CD81-BHHTEGST. We found that NP-SIMS could determine the relative abundance of the two proteins and required only a few hundred or thousand EVs in the analysis region to detect the presence of the tagged antibodies.
Collapse
Affiliation(s)
- Dmitriy S Verkhoturov
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bruno P Crulhas
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - Michael J Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, California 91330, United States
| | - Yong D Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | | | - Yordanos Bisrat
- Materials Characterization Facility, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW St-11-14, Rochester, Minnesota 55905, United States
| | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|
6
|
Time-Gated Luminescent In Situ Hybridization (LISH): Highly Sensitive Detection of Pathogenic Staphylococcus aureus. Molecules 2019; 24:molecules24112083. [PMID: 31159269 PMCID: PMC6600140 DOI: 10.3390/molecules24112083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/18/2022] Open
Abstract
We describe simple direct conjugation of a single TEGylated Europium chelate to DNA that binds to intracellular rRNA and is then detected using a homogeneous luminescent in situ hybridisation (LISH) technique. As a proof-of-principle, Staphylococcus aureus (S. aureus) was selected as a model for our study to show the ability of this probe to bind to intracellular 16S ribosomal rRNA. A highly purified Europium chelate conjugated oligonucleotide probe complementary to an rRNA sequence-specific S. aureus was prepared and found to be soluble and stable in aqueous solution. The probe was able to bind specifically to S. aureus via in situ hybridisation to differentiate S. aureus from a closely related but less pathogenic Staphylococcus species (S. epidermidis). A time-gated luminescent (TGL) microscope system was used to generate the high signal-to-noise ratio (SNR) images of the S. aureus. After excitation (365 nm, Chelate λmax = 335 nm), the long-lived (Eu3+) luminescent emission from the probe was detected without interference from natural background autofluorescence typically seen in biological samples. The luminescent images were found to have 6 times higher SNR or sensitivity compared to the fluorescent images using conventional fluorophore Alexa Fluor 488. The TEGylated Europium chelate -oligo probe stained S. aureus with mean signal intensity 3.5 times higher than the threshold level of signal from S. epidermidis (with SNR 8 times higher). A positive control probe (EUB338–BHHTEGST–Eu3+) has mean signal intensity for S. aureus and S. epidermidis equally 3.2 times higher than the threshold of signal for a negative NON-EUB338 control probe. The direct conjugation of a single Europium chelate to DNA provides simplicity and improvement over existing bovine serum albumin (BSA)/streptavidin/biotinylated DNA platforms for multi-attachment of Europium chelate per DNA and more importantly makes it feasible for hybridisation to intracellular RNA targets. This probe has great potential for highly sensitive homogeneous in situ hybridisation detection of the vast range of intracellular DNA targets.
Collapse
|
7
|
Parker LM, Sayyadi N, Staikopoulos V, Shrestha A, Hutchinson MR, Packer NH. Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization. J Neuroinflammation 2019; 16:65. [PMID: 30898121 PMCID: PMC6427895 DOI: 10.1186/s12974-019-1451-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurokine signaling via the release of neurally active cytokines arises from glial reactivity and is mechanistically implicated in central nervous system (CNS) pathologies such as chronic pain, trauma, neurodegenerative diseases, and complex psychiatric illnesses. Despite significant advancements in the methodologies used to conjugate, incorporate, and visualize fluorescent molecules, imaging of rare yet high potency events within the CNS is restricted by the low signal to noise ratio experienced within the CNS. The brain and spinal cord have high cellular autofluorescence, making the imaging of critical neurokine signaling and permissive transcriptional cellular events unreliable and difficult in many cases. METHODS In this manuscript, we developed a method for background-free imaging of the transcriptional events that precede neurokine signaling using targeted mRNA transcripts labeled with luminescent lanthanide chelates and imaged via time-gated microscopy. To provide examples of the usefulness this method can offer to the field, the mRNA expression of toll-like receptor 4 (TLR4) was visualized with traditional fluorescent in situ hybridization (FISH) or luminescent lanthanide chelate-based in situ hybridization (LISH) in mouse BV2 microglia or J774 macrophage phenotype cells following lipopolysaccharide stimulation. TLR4 mRNA staining using LISH- and FISH-based methods was also visualized in fixed spinal cord tissues from BALB/c mice with a chronic constriction model of neuropathic pain or a surgical sham model in order to demonstrate the application of this new methodology in CNS tissue samples. RESULTS Significant increases in TLR4 mRNA expression and autofluorescence were visualized over time in mouse BV2 microglia or mouse J774 macrophage phenotype cells following lipopolysaccharide (LPS) stimulation. When imaged in a background-free environment with LISH-based detection and time-gated microscopy, increased TLR4 mRNA was observed in BV2 microglia cells 4 h following LPS stimulation, which returned to near baseline levels by 24 h. Background-free imaging of mouse spinal cord tissues with LISH-based detection and time-gated microscopy demonstrated a high degree of regional TLR4 mRNA expression in BALB/c mice with a chronic constriction model of neuropathic pain compared to the surgical sham model. CONCLUSIONS Advantages offered by adopting this novel methodology for visualizing neurokine signaling with time-gated microscopy compared to traditional fluorescent microscopy are provided.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nima Sayyadi
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Vasiliki Staikopoulos
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish Shrestha
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale Biophotonics, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicolle H Packer
- Department of Molecular Sciences and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, North Ryde, NSW, 2109, Australia.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
8
|
Abstract
Bio-imaging is a key technique in tracking and monitoring important biological processes and fundamental biomolecular interactions, however the interference of background autofluorescence with targeted fluorophores is problematic for many bio-imaging applications. This study reports on two novel methods for reducing interference with cellular autofluorescence for bio-imaging. The first method uses fluorescent nanodiamonds (FNDs), containing nitrogen vacancy centers. FNDs emit at near-infrared wavelengths typically higher than most cellular autofluorescence; and when appropriately functionalized, can be used for background-free imaging of targeted biomolecules. The second method uses europium-chelating tags with long fluorescence lifetimes. These europium-chelating tags enhance background-free imaging due to the short fluorescent lifetimes of cellular autofluorescence. In this study, we used both methods to target E-selectin, a transmembrane glycoprotein that is activated by inflammation, to demonstrate background-free fluorescent staining in fixed endothelial cells. Our findings indicate that both FND and Europium based staining can improve fluorescent bio-imaging capabilities by reducing competition with cellular autofluorescence. 30 nm nanodiamonds coated with the E-selectin antibody was found to enable the most sensitive detective of E-selectin in inflamed cells, with a 40-fold increase in intensity detected.
Collapse
|
9
|
Sayyadi N, Justiniano I, Connally RE, Zhang R, Shi B, Kautto L, Everest-Dass AV, Yuan J, Walsh BJ, Jin D, Willows RD, Piper JA, Packer NH. Sensitive Time-Gated Immunoluminescence Detection of Prostate Cancer Cells Using a TEGylated Europium Ligand. Anal Chem 2016; 88:9564-9571. [DOI: 10.1021/acs.analchem.6b02191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nima Sayyadi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Irene Justiniano
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Russell E. Connally
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Run Zhang
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Liisa Kautto
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Arun V. Everest-Dass
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jingli Yuan
- State
Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning Province 116024, China
| | - Bradley J. Walsh
- Minomic International Ltd., Macquarie Park, Sydney, New South Wales 2113, Australia
| | - Dayong Jin
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- School of
Mathematical and Physical Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Robert D. Willows
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - James A. Piper
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Department
of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC
Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
10
|
A Novel Universal Detection Agent for Time-Gated Luminescence Bioimaging. Sci Rep 2016; 6:27564. [PMID: 27282464 PMCID: PMC4901361 DOI: 10.1038/srep27564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/20/2016] [Indexed: 11/08/2022] Open
Abstract
Luminescent lanthanide chelates have been used to label antibodies in time-gated luminescence (TGL) bioimaging. However, it is a challenging task to label directly an antibody with lanthanide-binding ligands and achieve control of the target ligand/protein ratios whilst ensuring that affinity and avidity of the antibody remain uncompromised. We report the development of a new indirect detection reagent to label antibodies with detectable luminescence that circumvents this problem by labelling available lysine residues in the linker portion of the recombinant fusion protein Linker-Protein G (LPG). Succinimide-activated lanthanide chelating ligands were attached to lysine residues in LPG and Protein G (without Linker) and the resulting Luminescence-Activating (LA-) conjugates were compared for total incorporation and conjugation efficiency. A higher and more efficient incorporation of ligands at three different molar ratios was observed for LPG and this effect was attributed to the presence of eight readily available lysine residues in the linker region of LPG. These Luminescence-Activating (LA-) complexes were subsequently shown to impart luminescence (upon formation of europium(III) complexes) to cell-specific antibodies within seconds and without the need for any complicated bioconjugation procedures. The potential of this technology was demonstrated by direct labelling of Giardia cysts and Cryptosporidium oocysts in TGL bioimaging.
Collapse
|