1
|
Kostera S, Gonsalvi L. Sustainable Hydrogen Production by Glycerol and Monosaccharides Catalytic Acceptorless Dehydrogenation (AD) in Homogeneous Phase. CHEMSUSCHEM 2025; 18:e202400639. [PMID: 39503242 PMCID: PMC11912131 DOI: 10.1002/cssc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/08/2024] [Indexed: 11/28/2024]
Abstract
In the quest for sustainable hydrogen production, the use of biomass-derived feedstock is gaining importance. Acceptorless Dehydrogenation (AD) in the presence of efficient and selective catalysts has been explored worldwide as a suitable method to produce hydrogen from hydrogen-rich simple organic molecules. Among these, glycerol and sugars have the advantage of being inexpensive, abundant, and obtainable from fatty acid basic hydrolysis (biodiesel industry) and from biomass by biochemical and thermochemical processing, respectively. Although heterogeneous catalysts are more widely used for hydrogen production from biomass-based feedstock, the harsh reaction conditions often limit their applicability due to the deactivation of active sites caused by the coking of carbonaceous materials. Moreover, heterogeneous catalysts are more difficult to fine-tune than homogeneous counterparts, and the latter also allow for high process selectivities under milder conditions. The present Concept article summarizes the main features of the most active homogeneous catalysts reported for glycerol and monosaccharides AD. In order to directly compare hydrogen production efficiencies, the choice of literature works was limited to reports where hydrogen was clearly quantified by yields and turnover numbers (TONs). The types of transition metals and ligands are discussed, together with a perspective view on future challenges of homogeneous AD reactions for practical applications.
Collapse
Affiliation(s)
- Sylwia Kostera
- Istituto di Chimica dei Composti Organometallici (ICCOM)Consiglio Nazionale delle Ricerche (CNR)Via Madonna del Piano 1050019Sesto Fiorentino (Florence)Italy
| | - Luca Gonsalvi
- Istituto di Chimica dei Composti Organometallici (ICCOM)Consiglio Nazionale delle Ricerche (CNR)Via Madonna del Piano 1050019Sesto Fiorentino (Florence)Italy
| |
Collapse
|
2
|
Vikas, Kathuria L, Brodie CN, Cross MJ, Pasha FA, Weller AS, Kumar A. Selective PNP Pincer-Ir-Promoted Acceptorless Transformation of Glycerol to Lactic Acid and Hydrogen. Inorg Chem 2025; 64:3760-3770. [PMID: 39962705 DOI: 10.1021/acs.inorgchem.4c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The catalytic transformation of glycerol (GLY) using [(iPr2PNHP)Ir(COD)]Cl [iPr2PNHP = κ3-(iPr2PCH2CH2)2NH] affords hydrogen and lactic acid (LA), trapped as its sodium salt (Na[LA]) with high yield (96%) and selectivity (99%) in the presence of an equivalent of in situ generated NaOEt at 140 °C within 4 h. A diminution in activity was observed when the PNMeP ligand was used instead of PNHP, or when Cl- was replaced by [BArF4]-. An Ir to Rh substitution also resulted in poor activity. Kinetic studies show a first-order dependence of the initial rate of turnovers on the concentrations of [(iPr2PNHP)Ir(COD)]Cl, NaOEt, and glycerol. An outer-sphere mechanism does not explain the activity of [(iPr2PNMeP)Ir(COD)]Cl, and DFT studies support an inner-sphere mechanism, with oxidative addition of glycerol to the 14-electron intermediate [(iPr2PNHP)Ir]Cl determined as the rate-determining step (RDS). A kH/kD of 2.7 obtained with glycerol-d8 shows a major contribution from O-H activation in the RDS. The kinetics of the reaction become favorable (ΔG140⧧ = 27.01 kcal/mol) when one of the terminal O-H's of glycerol is hydrogen bonded to the N-H of the pincer backbone, in contrast to cases where no hydrogen bonds are invoked (ΔG140⧧ = 31.96 kcal/mol) or are not possible [(iPr2PNMeP)Ir]Cl (ΔG140⧧ = 30.36 kcal/mol).
Collapse
Affiliation(s)
- Vikas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Claire N Brodie
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Mathew J Cross
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Farhan Ahmad Pasha
- SABIC, Corporate Research and Development, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew S Weller
- Department of Chemistry, University of York, York YO10 5DD, U.K
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Rachuri Y, Gholap SS, Hengne AM, Rahman MM, Dutta I, Hassine MB, Xi S, Huang KW. Boosting the Performance of Iridium Single Atom Catalyst in a Porous Organic Polymer for Glycerol Conversion to Lactic Acid. Angew Chem Int Ed Engl 2025; 64:e202419607. [PMID: 39686645 DOI: 10.1002/anie.202419607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Single-atom catalysts (SACs) inherit the merit of both homogeneous and heterogeneous systems with atomically dispersed mononuclear metal centers on the solid supports. Herein, we developed an Ir-SAC catalyst via the polymerization of an active homogeneous 2-picolinylhydrazone ligand-based iridium (Ir) metal complex. Such catalysts provide great stabilization against migration and agglomeration due to the strong covalent C-C bond linkage of active complexes and the polymer matrix. This Ir-SAC catalyst shows excellent selectivity towards glycerol to lactic acid conversion with a remarkable recyclability to offer an unprecedentedly high TON of over 104 million under optimized conditions.
Collapse
Affiliation(s)
- Yadagiri Rachuri
- Center for Renewable Energy and Storage Technologies and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandeep Suryabhan Gholap
- Center for Renewable Energy and Storage Technologies and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Amol M Hengne
- Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 627833, Singapore
| | - Mohammad Misbahur Rahman
- Center for Renewable Energy and Storage Technologies and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Center for Renewable Energy and Storage Technologies and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Ben Hassine
- CoreLabs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 627833, Singapore
| | - Kuo-Wei Huang
- Center for Renewable Energy and Storage Technologies and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research, Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 627833, Singapore
| |
Collapse
|
4
|
Sahoo ST, Sinku A, Daw P. A catalytic approach for the dehydrogenative upgradation of crude glycerol to lactate and hydrogen generation. RSC Adv 2024; 14:37082-37086. [PMID: 39569106 PMCID: PMC11577341 DOI: 10.1039/d4ra07028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
The ambiguous nature of non-innocent ligand catalysts provides an excellent strategy for developing an efficient catalyst system featuring extended applicability in sustainable catalysis. In this study, we unveil the catalytic activity of an NNN-Ru catalyst for lactic acid synthesis from a mixture of glycerol, ethylene glycol, and methanol. The developed strategy was also implemented to synthesize lactate (up to 80% yield) with good selectivity via the dehydrogenative upgradation of a crude glycerol and ethylene glycol mixture. As an extended utility, the method was utilized for lactate synthesis from triglyceride directly with hydrogen gas generation.
Collapse
Affiliation(s)
- Satabdee Tanaya Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| | - Anurita Sinku
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| | - Prosenjit Daw
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur Transit Campus, (Govt. ITI Building), Engineering School Junction Berhampur 760010 Odisha India
| |
Collapse
|
5
|
Venkateshappa B, Bisarya A, Nandi PG, Dhole S, Kumar A. Production of Lactic Acid via Catalytic Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Ferrous Chloride and Its NNN Pincer-Iron Complexes. Inorg Chem 2024; 63:15294-15310. [PMID: 39112425 DOI: 10.1021/acs.inorgchem.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
NNN-Bis(imino) pyridine-based pincer-Fe(II) complexes with an expected trigonal bipyramidal (TBP) geometry equilibrated to a rearranged ion pair of an octahedral dicationic Fe complex containing two bis(imino)pyridine ligands that are neutralized by a tetrahedral dianionic-[FeCl4]2-. Single-crystal X-ray diffraction (SCXRD), high-resolution mass spectrometry (HRMS), and UV-visible (UV-vis) studies suggested that the equilibrium was dictated by the sterics of the R group on the imine N, with the less-crowded groups tilting the equilibrium to the ion pair and the bulky ones favoring the TBP geometry. Electron paramagnetic resonance (EPR) and Evan's magnetic moment measurements indicated that the complexes were paramagnetic with Fe(II) in a high-spin state. In solution, over a period of 7 days, these Fe(II) complexes oxidized to a mixture of low-spin and high-spin Fe(III) species. These pincer-Fe(II) were found to be highly active toward the transformation of biodiesel waste glycerol to value-added lactic acid (LA). Particularly, (Ph2NNN)FeCl2 (0.1 mol %) gave 91% LA with a 99% selectivity at 140 °C using 1.2 equiv of NaOH. With 0.0001 mol % (Ph2NNN)FeCl2, very high turnovers (74% LA, 98% selectivity, 740 000 turnover number (TON) at 4405 turnovers per hour (TOs/h)) were obtained after 7 days. EPR indicated Fe(III) species to be the active catalyst, a few of which were detected by HRMS. Experiments with Hg are suggestive of the mostly homogeneous molecular nature of the catalyst with a minor contribution from heterogeneous Fe nanoparticles.
Collapse
Affiliation(s)
- Babu Venkateshappa
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari, Pune 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Xu X, You H, Dong B, He Y, Li F. Selective Conversion of Glycerol to Lactic Acid in Water via Acceptorless Dehydrogenation Catalyzed by a Water-Soluble Metal-Ligand Bifunctional Iridium Catalyst. Inorg Chem 2024; 63:12929-12934. [PMID: 38954498 DOI: 10.1021/acs.inorgchem.4c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
An efficient method for the selective conversion of glycerol, the major byproduct of the biodiesel manufacturing process, to lactic acid in water via acceptorless dehydrogenation has been developed. In the presence of a water-soluble [Cp*Ir(6,6'-(OH)2-2,2'-bpy)(H2O)][OTf]2 (0.1 mol %) and KOH (1.1 equiv), the reaction proceeded at 120 °C for 24 h to afford the desired product in >99% yield with >99% selectivity. It was confirmed that OH functional groups in the ligand were crucial for the activity of the iridium complex. Furthermore, density functional theory calculations and mechanistic experiments were also undertaken.
Collapse
Affiliation(s)
- Xiangchao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Heng You
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Beixuan Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Yiqian He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
7
|
Bisarya A, Karim S, Narjinari H, Banerjee A, Arora V, Dhole S, Dutta A, Kumar A. Production of hydrogen from alcohols via homogeneous catalytic transformations mediated by molecular transition-metal complexes. Chem Commun (Camb) 2024; 60:4148-4169. [PMID: 38563372 DOI: 10.1039/d4cc00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Hydrogen obtained from renewable sources such as water and alcohols is regarded as an efficient clean-burning alternative to non-renewable fuels. The use of the so-called bio-H2 regardless of its colour will be a significant step towards achieving global net-zero carbon goals. Challenges still persist however with conventional H2 storage, which include low-storage density and high cost of transportation apart from safety concerns. Global efforts have thus focussed on liquid organic hydrogen carriers (LOHCs), which have shown excellent potential for H2 storage while allowing safer large-scale transformation and easy on-site H2 generation. While water could be considered as the most convenient liquid inorganic hydrogen carrier (LIHC) on a long-term basis, the utilization of alcohols as LOHCs to generate on-demand H2 has tasted instant success. This has helped to draw a road-map of futuristic H2 storage and transportation. The current review brings to the fore the state-of-the-art developments in hydrogen generation from readily available, feed-agnostic bio-alcohols as LOHCs using molecular transition-metal catalysts.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Suhana Karim
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Anwesha Banerjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA, Bhosari Pune - 411026, Maharashtra, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- National Centre of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science & Technology Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
8
|
Wei Z, Ke Z, Wang Y, Liu Q. Manganese-catalyzed Efficient Synthesis of N-heterocycles and Aminoketones Using Glycerol as a C3 Synthon. Chemistry 2024; 30:e202303481. [PMID: 38239082 DOI: 10.1002/chem.202303481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 03/10/2024]
Abstract
Glycerol is one of the important biomass-derived feedstocks and the high-value utilizations of glycerol have attracted much attentions in recent years. Herein, we report a manganese catalyzed dehydrogenative coupling of glycerol with amines for the synthesis of substituted 2-methylquinoxalines, 2-ethylbenzimidazoles, and α-aminoketones without any external oxidant. In these reactions, NHC-based pincer manganese complex featuring a pyridine backbone displayed high catalytic activity and selectivity, in which hydrogen and water were produced as the only by-products using glycerol as a C3 synthon.
Collapse
Affiliation(s)
- Zeyuan Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yujie Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Qiang Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Narjinari H, Dhole S, Kumar A. Acceptorless or Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Cobaltous Chloride - Facile Access to Lactic Acid and Hydrogen or Isopropanol. Chemistry 2024; 30:e202302686. [PMID: 37811834 DOI: 10.1002/chem.202302686] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
The dehydrogenation of glycerol to lactic acid (LA) under both acceptorless and transfer dehydrogenation conditions using readily available, inexpensive, environmentally benign and earth-abundant base metal salt CoCl2 is reported here. The CoCl2 (0.5 mol %) catalyzed acceptorless dehydrogenation of glycerol at 160 °C in the presence of 0.75 equiv. of KOH, gave up to 33 % yield of LA in 44 % selectivity apart from hydrogen. Alternatively, with acetone as a sacrificial hydrogen acceptor, the CoCl2 (0.5 mol %) catalyzed dehydrogenation of glycerol at 160 °C in the presence of 1.1 equiv. of NaOt Bu resulted in up to 93 % LA with 96 % selectivity along with another value-added product isopropanol. Labelling studies revealed a modest secondary KIE of 1.68 which points to the involvement of C-H bond activation as a part of the catalytic cycle but not as a part of the rate-determining step. Catalyst poisoning experiments with PPh3 and CS2 are indicative of the homogeneous nature of the reaction mixture involving molecular species that are likely to be in-situ formed octahedral Co(II) as inferred from EPR, HRMS and Evans magnetic moment studies. The net transfer dehydrogenation activity is attributed to exclusive contribution from the alcoholysis step.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari, Pune, 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
- Centre for Nanotechnology, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
10
|
Messori A, Martelli G, Piazzi A, Basile F, De Maron J, Fasolini A, Mazzoni R. Molecular Ruthenium Cyclopentadienone Bifunctional Catalysts for the Conversion of Sugar Platforms to Hydrogen. Chempluschem 2023; 88:e202300357. [PMID: 37572103 DOI: 10.1002/cplu.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Molecular ruthenium cyclopentadienone complexes were employed for the first time as pre-catalysts in the homogeneously catalysed Aqueous Phase Reforming (APR) of glucose. Shvo's complex resulted the best pre-catalyst (loading 2 mol %) with H2 yields up to 28.9 % at 150 °C. Studies of the final mixture allowed to identify the catalyst's resting state as a mononuclear dicarbonyl complex in the extracted organic fraction. In situ NMR experiments and HPLC analyses on the aqueous fraction gave awareness of the presence of sorbitol, fructose, 5-hydroxymethylfurfural and furfural as final fate or intermediates in the transformations under APR conditions. These results were summarized in a proposed mechanism, with particular emphasis on the steps where hydrogen was obtained as the product. Benzoquinone positively affected the catalyst activation when employed as an equimolar additive.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Giulia Martelli
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Piazzi
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Jacopo De Maron
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Fasolini
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
11
|
Jiménez MV, Ojeda-Amador AI, Puerta-Oteo R, Martínez-Sal J, Passarelli V, Pérez-Torrente JJ. Selective Oxidation of Glycerol via Acceptorless Dehydrogenation Driven by Ir(I)-NHC Catalysts. Molecules 2022; 27:7666. [PMID: 36431768 PMCID: PMC9696977 DOI: 10.3390/molecules27227666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings.
Collapse
Affiliation(s)
- M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | | | | | | | | | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
12
|
Zhang G, Zhao J, Jin X, Qian Y, Zhou M, Jia X, Sun F, Jiang J, Xu W, Sun B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front Chem 2022; 10:962579. [PMID: 36072704 PMCID: PMC9442352 DOI: 10.3389/fchem.2022.962579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is considered as one of the most promising technologies for the upgradation of glycerol into renewable products. Currently, research studies reveal that anaerobic transformation of glycerol to LA could also obtain green H2 with the same yield of LA. However, the combined value-added utilization of released H2 with high selectivity of LA during glycerol conversion under mild conditions still remains a grand challenge. In this perspective, for the first time, we conducted a comprehensive and critical discussion on current strategies for combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The aim of this overview was to provide a general guidance on the atomic economic reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as other chemicals.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Guangyu Zhang,
| | - Jian Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Qian
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Mingchuan Zhou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xuewu Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Feng Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
13
|
Iridium(triNHC)-Catalyzed Transfer Hydrogenation of Glycerol Carbonate without Exogenous Reductants. Catalysts 2022. [DOI: 10.3390/catal12060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The iridium(Ir) (triNHC = tri-N-heterocyclic carbene)-catalyzed transfer hydrogenation of glycerol carbonate (GC) is described in the absence of additional hydride sources. The described reduction provides a sustainable route to produce industrially-valuable formate and lactate with high turnover numbers (TONs). The bimetallic Ir(I) involving triNHC carbene ligands exhibits high TONs, and the reaction mechanism, including the bimetallic Ir(triNHC) catalyst, is proposed based on mechanistic studies.
Collapse
|
14
|
Mechanistic Investigations of the Synthesis of Lactic Acid from Glycerol Catalyzed by an Iridium–NHC Complex. Processes (Basel) 2022. [DOI: 10.3390/pr10040626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the present work, the reaction pathways and the origin of catalytic activity for the production of lactic acid from glycerol catalyzed by an iridium–heterocyclic carbene (Iridium-NHC) complex at 383.15 K were investigated by DFT study at the M06-D3/6-311++G (d, p)//SDD level. Compared to the noncatalytic reaction pathway, the energy barrier sharply decreased from 75.2 kcal mol−1 to 16.8 kcal mol−1 with the introduction of the iridium–NHC complex. The catalytic reaction pathway catalyzed by the iridium–NHC complex with a coordinated hydroxide included two stages: the dehydrogenation of glycerol to 2,3-dihydroxypropanal, and the subsequent isomerization to lactic acid. Two reaction pathways, including dehydrogenation in terminal and that in C2-H, were studied. It was found that the formation of dihydroxyacetone from the H-removal in C2-H was more favorable, which might have been due to the lower energy of LUMO, whereas dihydroxyacetone could be easily transferred to 2,3-dihydroxypropanal. The analyses of electrostatic potential (ESP), hardness, and f- Fukui function also confirmed that the iridium–NHC complex acted as a hydrogen anion receptor and nucleophilic reaction center to highly promote the conversion of glycerol to lactic acid.
Collapse
|
15
|
Kumar A, Awasthi MK, Priya B, Singh SK. Selective Hydrogen Production from Glycerol over Ruthenium Catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ankit Kumar
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Mahendra K. Awasthi
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Bhanu Priya
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Sanjay Kumar Singh
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| |
Collapse
|
16
|
Curley JB, Townsend TM, Bernskoetter WH, Hazari N, Mercado BQ. Iron, Cobalt, and Nickel Complexes Supported by a iPrPNPhP Pincer Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
17
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Chu D, Zhou H, Luo Z. CrO x decoration on Fe/TiO 2 with tunable and stable oxygen vacancies for selective oxidation of glycerol to lactic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj04088c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-noble metal-based catalysts catalyze the conversion of glycerol to lactic acid.
Collapse
Affiliation(s)
- Dawang Chu
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, 202162, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhicheng Luo
- MOE Key Laboratory of Energy Thermal Conversion & Control, School of Energy and Environment, Southeast University, Nanjing 210096, 202162, China
| |
Collapse
|
19
|
Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH 2CH 2P iPr 2) 2 Pincer Ligand in CO 2 Hydrogenation and Formic Acid Dehydrogenation. Inorg Chem 2021; 61:643-656. [PMID: 34955015 DOI: 10.1021/acs.inorgchem.1c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel pincer ligand, iPrPNPhP [PhN(CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kinetic advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.
Collapse
Affiliation(s)
- Julia B Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Clayton Hert
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Sun H, Ahrens A, Kristensen SK, Gausas L, Donslund BS, Skrydstrup T. Practical Gas Cylinder-Free Preparations of Important Transition Metal-Based Precatalysts Requiring Gaseous Reagents. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hongwei Sun
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Alexander Ahrens
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steffan K. Kristensen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Laurynas Gausas
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Bjarke S. Donslund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Shen L, Chen ZN, Zheng Q, Wu J, Xu X, Tu T. Selective Transformation of Vicinal Glycols to α-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Zhe-Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Homogeneous first-row transition metal catalyst for sustainable hydrogen production and organic transformation from methanol, formic acid, and bio-alcohols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Curley JB, Smith NE, Bernskoetter WH, Ertem MZ, Hazari N, Mercado BQ, Townsend TM, Wang X. Understanding the Reactivity and Decomposition of a Highly Active Iron Pincer Catalyst for Hydrogenation and Dehydrogenation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mehmed Z. Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
25
|
Townsend TM, Bernskoetter WH, Hazari N, Mercado BQ. Dehydrogenative Synthesis of Carbamates from Formamides and Alcohols Using a Pincer-Supported Iron Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
26
|
Dobereiner GE, Hazari N, Schley ND. Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree’s Storied Career via an Unusual Journey to the Ivy League. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, Unites States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
27
|
Toyooka G, Tanaka T, Kitayama K, Kobayashi N, Watanabe T, Fujita KI. Hydrogen production from cellulose catalyzed by an iridium complex in ionic liquid under mild conditions. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02419h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new and simple method for hydrogen production from cellulose using an iridium catalyst and an ionic liquid under mild conditions was developed.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| | - Toshiki Tanaka
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| | | | - Naoko Kobayashi
- Research Institute for Sustainable Humanosphere
- Kyoto University
- Kyoto
- Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere
- Kyoto University
- Kyoto
- Japan
| | - Ken-ichi Fujita
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
28
|
Kumar A, Gao C. Homogeneous (De)hydrogenative Catalysis for Circular Chemistry – Using Waste as a Resource. ChemCatChem 2020. [DOI: 10.1002/cctc.202001404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Amit Kumar
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Chang Gao
- School of Chemistry University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
29
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
30
|
Wu J, Shen L, Chen Z, Zheng Q, Xu X, Tu T. Iridium‐Catalyzed Selective Cross‐Coupling of Ethylene Glycol and Methanol to Lactic Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Zhe‐Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Road Shanghai 200032 P. R. China
- College of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| |
Collapse
|
31
|
Wu J, Shen L, Chen Z, Zheng Q, Xu X, Tu T. Iridium‐Catalyzed Selective Cross‐Coupling of Ethylene Glycol and Methanol to Lactic Acid. Angew Chem Int Ed Engl 2020; 59:10421-10425. [DOI: 10.1002/anie.202002403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Jiajie Wu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Lingyun Shen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Zhe‐Ning Chen
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Qingshu Zheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials MOE Laboratory for Computational Physical Science Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
| | - Tao Tu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 354 Fenglin Road Shanghai 200032 P. R. China
- College of Chemistry and Molecular Engineering Zhengzhou University 100 Kexue Avenue Zhengzhou 450001 P. R. China
| |
Collapse
|
32
|
|
33
|
Borah D, Saha B, Sarma B, Das P. A cyclometalated Ir(III)-NHC complex as a recyclable catalyst for acceptorless dehydrogenation of alcohols to carboxylic acids. Dalton Trans 2020; 49:16866-16876. [PMID: 33179681 DOI: 10.1039/d0dt02341h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we have synthesized two new [C, C] cyclometalated Ir(iii)-NHC complexes, [IrCp*(C∧C:NHC)Br](1a,b), [Cp* = pentamethylcyclopentadienyl; NHC = (2-flurobenzyl)-1-(4-methoxyphenyl)-1H-imidazoline-2-ylidene (a); (2-flurobenzyl)-1-(4-formylphenyl)-1H-imidazoline-2-ylidene (b)] via intramolecular C-H bond activation. The molecular structure of complex 1a was determined by X-ray single crystal analysis. The catalytic potentials of the complexes were explored for acceptorless dehydrogenation of alcohols to carboxylic acids with concomitant hydrogen gas evolution. Under similar experimental conditions, complex 1a was found to be slightly more efficient than complex 1b. Using 0.1 mol% of complex 1a, good-to-excellent yields of carboxylic acids/carboxylates have been obtained for a wide range of alcohols, both aliphatic and aromatic, including those involving heterocycles, in a short reaction time with a low loading of catalyst. Remarkably, our method can produce benzoic acid from benzyl alcohol on a gram scale with a catalyst-to-substrate ratio as low as 1 : 5000 and exhibit a TON of 4550. Furthermore, the catalyst could be recycled at least three times without losing its activity. A mechanism has been proposed based on controlled experiments and in situ NMR study.
Collapse
Affiliation(s)
- Dhrubajit Borah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India.
| | | | | | | |
Collapse
|
34
|
Yin C, Li X, Chen Z, Zou W, Peng Y, Wei S, Tang C, Dong L. Sustainable production of pyruvic acid: oxidative dehydrogenation of lactic acid over the FeMoO/P catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj00118j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Novel redox of FeMoO/P by electron transfer between Fe and Mo is favorable for the oxidative dehydrogenation of lactic acid.
Collapse
Affiliation(s)
- Chunyu Yin
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Xinli Li
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Zhi Chen
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Weixin Zou
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Center of Modern Analysis
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yanli Peng
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Song Wei
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Congming Tang
- School of Chemistry and Chemical Engineering
- Chongqing University of Technology
- Chongqing 400054
- P. R. China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions Control
- Center of Modern Analysis
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
35
|
Dutta M, Das K, Prathapa SJ, Srivastava HK, Kumar A. Selective and high yield transformation of glycerol to lactic acid using NNN pincer ruthenium catalysts. Chem Commun (Camb) 2020; 56:9886-9889. [DOI: 10.1039/d0cc02884c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sterically less hindered 2,6-bis(benzimidazol-2-yl)pyridine based pincer–ruthenium complex has been used here to accomplish the catalytic conversion of glycerol selectively to lactic acid in high yield.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | - Kanu Das
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
| | | | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research Guwahati
- Guwahati – 781101
- India
| | - Akshai Kumar
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati – 781039
- India
- Centre for Nanotechnology
| |
Collapse
|
36
|
Casas F, Trincado M, Rodriguez‐Lugo R, Baneerje D, Grützmacher H. A Diaminopropane Diolefin Ru(0) Complex Catalyzes Hydrogenation and Dehydrogenation Reactions. ChemCatChem 2019. [DOI: 10.1002/cctc.201901739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Fernando Casas
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Monica Trincado
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Rafael Rodriguez‐Lugo
- Laboratorio de BioinorgánicaCentro de Química Instituto Venezolano de Investigaciones Científicas (IVIC) Caracas 1020 A Venezuela
| | - Dipshikha Baneerje
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
37
|
Smith NE, Bernskoetter WH, Hazari N. The Role of Proton Shuttles in the Reversible Activation of Hydrogen via Metal-Ligand Cooperation. J Am Chem Soc 2019; 141:17350-17360. [PMID: 31617710 DOI: 10.1021/jacs.9b09062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reversible activation of H2 via a pathway involving metal-ligand cooperation (MLC) is proposed to be important in many transition metal catalyzed hydrogenation and dehydrogenation reactions. Nevertheless, there is a paucity of experimental information probing the mechanism of this transformation. Here, we present an in-depth kinetic study of the 1,2-addition of H2 via an MLC pathway to the widely used iron catalyst [(iPrPNP)FeH(CO)] (1) (iPrPNP = N(CH2CH2PiPr2)2-). We report one of the first experimental demonstrations of an enhancement in rate for the activation of H2 using protic additives, which operate as "proton shuttles". Our results indicate that proton shuttles need to be able to both simultaneously donate and accept a proton, and the best shuttles are molecules that are strong hydrogen bond donors but sufficiently weak acids to avoid deleterious protonation of the transition metal complex. Additionally, comparison of the rate of H2 activation via an MLC pathway between 1 and two widely used ruthenium catalysts enables more general conclusions about the role of the metal, ancillary ligand, and proton shuttles in H2 activation. The results of this study provide guidance about the design of catalysts and additives to promote H2 activation via an MLC pathway.
Collapse
Affiliation(s)
- Nicholas E Smith
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| | - Wesley H Bernskoetter
- The Department of Chemistry , The University of Missouri , Columbia , Missouri 65211 , United States
| | - Nilay Hazari
- The Department of Chemistry , Yale University , P.O. Box 208107, New Haven , Connecticut 06520 , United States
| |
Collapse
|
38
|
Remya GS, Suresh CH. Hydrogen elimination reactivity of ruthenium pincer hydride complexes: a DFT study. NEW J CHEM 2019. [DOI: 10.1039/c9nj03100f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pincer effect is explained for various pincer hydride complexes, differing in the donor atoms, using activation barriers, and MESP parameters.
Collapse
Affiliation(s)
- Geetha S. Remya
- Chemical Sciences and Technology Division
- CSIR–National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- CSIR–National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|
39
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|
40
|
Curley JB, Smith NE, Bernskoetter WH, Hazari N, Mercado BQ. Catalytic Formic Acid Dehydrogenation and CO2 Hydrogenation Using Iron PNRP Pincer Complexes with Isonitrile Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00534] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nicholas E. Smith
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
41
|
Dehydrogenation of alcohols and polyols from a hydrogen production perspective. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
The production of hydrogen from renewable resources is still a major challenge in our way to reach a foreseen hydrogen economy. Abstracting the hydrogen contained in alcohols by means of acceptorless dehydrogenation reactions has emerged as a viable method with high potential. This is particularly true when applied to bio-based alcohols such as ethanol, glycerol or sugars, whose hydrogen extrusion is covered in this contribution. A general overview of the development of aceptorless alcohol dehydrogenation reactions and its potential implementation into future biorefineries are discussed.
Collapse
|
42
|
Wellala NN, Luebking JD, Krause JA, Guan H. Roles of Hydrogen Bonding in Proton Transfer to κ P,κ N,κ P-N(CH 2CH 2P i Pr 2) 2-Ligated Nickel Pincer Complexes. ACS OMEGA 2018; 3:4986-5001. [PMID: 30023906 PMCID: PMC6045406 DOI: 10.1021/acsomega.8b00777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The nickel PNP pincer complex ( i PrPNP)NiPh ( i PrPNP = κP,κN,κP-N(CH2CH2P i Pr2)2) was prepared by reacting ( i PrPNP)NiBr with PhMgCl or deprotonating [( i PrPNHP)NiPh]Y ( i PrPNHP = κP,κN,κP-HN(CH2CH2P i Pr2)2; Y = Br, PF6) with KO t Bu. The byproducts of the PhMgCl reaction were identified as [( i PrPNHP)NiPh]Br and ( i PrPNP')NiPh ( i PrPNP' = κP,κN,κP-N(CH=CHP i Pr2)(CH2CH2P i Pr2)). The methyl analog ( i PrPNP)NiMe was synthesized from the reaction of ( i PrPNP)NiBr with MeLi, although it was contaminated with ( i PrPNP')NiMe due to ligand oxidation. Protonation of ( i PrPNP)NiX (X = Br, Ph, Me) with various acids, such as HCl, water, and MeOH, was studied in C6D6. Nitrogen protonation was shown to be the most favorable process, producing a cationic species [( i PrPNHP)NiX]+ with the NH moiety hydrogen-bonded to the conjugate base (i.e., Cl-, HO-, or MeO-). Protonation of the Ni-C bond was observed at room temperature with ( i PrPNP)NiMe, whereas at 70 °C with ( i PrPNP)NiPh, both resulting in [( i PrPNHP)NiCl]Cl as the final product. Protonation of ( i PrPNP)NiBr was complicated by site exchange between Br- and the conjugate base and by the degradation of the pincer complexes. Indene, which lacks hydrogen-bonding capability, was unable to protonate ( i PrPNP)NiPh and ( i PrPNP)NiMe, despite being more acidic than water and MeOH. Neutral and cationic nickel pincer complexes involved in this study, including ( i PrPNP')NiBr, ( i PrPNP)NiPh, ( i PrPNP')NiPh, ( i PrPNP)NiMe, [( i PrPNHP)NiPh]Y (Y = Br, PF6, BPh4), [( i PrPNHP)NiPh]2[NiCl4], [( i PrPNHP)NiMe]Y (Y = Cl, Br, BPh4), [( i PrPNHP)NiBr]Br, and [( i PrPNHP)NiCl]Cl, were characterized by X-ray crystallography.
Collapse
|
43
|
Dodekatos G, Schünemann S, Tüysüz H. Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01317] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Georgios Dodekatos
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Stefan Schünemann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
44
|
Lu Z, Cherepakhin V, Kapenstein T, Williams TJ. Upgrading Biodiesel from Vegetable Oils by Hydrogen Transfer to its Fatty Esters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:5749-5753. [PMID: 30319930 PMCID: PMC6178228 DOI: 10.1021/acssuschemeng.8b00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conversion of vegetable-derived triglycerides to fatty acid methyl esters (FAMEs) is a popular approach to the generation of biodiesel fuels and the basis of a growing industry. Drawbacks of the strategy are that (a) the glycerol backbone of the triglyceride is discarded as waste, and (2) most available natural triglycerides in the U.S. are multi-unsaturated or fully saturated, giving inferior fuel performance and causing engine problems. Here we show that catalysis by iridium complex 1 can address both of these problems through selective reduction of triglycerides high in polyunsaturation. This is realized using hydrogen from methanol or those imbedded in the triglyceride backbone, concurrently generating lactate as a value-added C3 product. Additional methanol or glycerol as a hydrogen source enables reduction of corn and soybean oils to > 80% oleate. The cost of the iridium catalyst is mitigated by its recovery through aqueous extraction. The process can be further driven with a supporting iron-based catalyst for the complete saturation of all olefins. Preparative procedures are established for synthesis and separation of methyl esters of the hydrogenated fatty acids, enabling instant access to upgraded biofuels.
Collapse
|
45
|
Finn M, Ridenour JA, Heltzel J, Cahill C, Voutchkova-Kostal A. Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00081] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew Finn
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
| | - J. August Ridenour
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
| | - Jacob Heltzel
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
| | - Christopher Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
| | - Adelina Voutchkova-Kostal
- Department of Chemistry, The George Washington University, 800 22nd Street NW, Washington, DC 20052, United States
| |
Collapse
|
46
|
Heltzel JM, Finn M, Ainembabazi D, Wang K, Voutchkova-Kostal AM. Transfer hydrogenation of carbon dioxide and bicarbonate from glycerol under aqueous conditions. Chem Commun (Camb) 2018; 54:6184-6187. [DOI: 10.1039/c8cc03157f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Catalytic transfer hydrogenation of CO2 from glycerol to afford formic and lactic acid is an attractive path to valorizing two waste streams. The process is significantly more thermodynamically favorable than direct CO2 hydrogenation.
Collapse
Affiliation(s)
- Jacob M. Heltzel
- Chemistry Department
- The George Washington University
- Washington
- USA
| | - Matthew Finn
- Chemistry Department
- The George Washington University
- Washington
- USA
| | | | - Kai Wang
- Chemistry Department
- The George Washington University
- Washington
- USA
| | | |
Collapse
|
47
|
Hydrogenation/Dehydrogenation of Unsaturated Bonds with Iron Pincer Catalysis. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Filonenko GA, van Putten R, Hensen EJM, Pidko EA. Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field. Chem Soc Rev 2018; 47:1459-1483. [DOI: 10.1039/c7cs00334j] [Citation(s) in RCA: 406] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review is aimed at introducing the remarkable progress made in the last three years in the development of base metal catalysts for hydrogenations and dehydrogenative transformations.
Collapse
Affiliation(s)
- Georgy A. Filonenko
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Robbert van Putten
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry Group
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Evgeny A. Pidko
- Department of Chemical Engineering
- Delft University of Technology
- 2629 HZ Delft
- The Netherlands
- ITMO University
| |
Collapse
|
49
|
Dai H, Guan H. Iron Dihydride Complexes: Synthesis, Reactivity, and Catalytic Applications. Isr J Chem 2017. [DOI: 10.1002/ijch.201700101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huiguang Dai
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| | - Hairong Guan
- Department of Chemistry University of Cincinnati Cincinnati, OH 45221-0172 USA
| |
Collapse
|
50
|
Sharninghausen LS, Mercado BQ, Hoffmann C, Wang X, Campos J, Crabtree RH, Balcells D. The neutron diffraction structure of [Ir4(IMe)8H10]2+ polyhydride cluster: Testing the computational hydride positional assignments. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|