1
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
2
|
Zhou S, Zhou J, Pan Y, Wu Q, Ping J. Wearable electrochemical sensors for plant small-molecule detection. TRENDS IN PLANT SCIENCE 2024; 29:219-231. [PMID: 38071111 DOI: 10.1016/j.tplants.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Small molecules in plants - such as metabolites, phytohormones, reactive oxygen species (ROS), and inorganic ions - participate in the processes of plant growth and development, physiological metabolism, and stress response. Wearable electrochemical sensors, known for their fast response, high sensitivity, and minimal plant damage, serve as ideal tools for dynamically tracking these small molecules. Such sensors provide producers or agricultural researchers with noninvasive or minimally invasive means of obtaining plant signals. In this review we explore the applications of wearable electrochemical sensors in detecting plant small molecules, enabling scientific assessment of plant conditions, quantification of environmental stresses, and facilitation of plant health monitoring and disease prediction.
Collapse
Affiliation(s)
- Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuxiang Pan
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural, Anhui Agricultural University, Anhui, PR China.
| |
Collapse
|
3
|
Eilstein J, Nair V, Moore K, Pannakal ST, Grégoire S, Ekhar P, Guy RH, Delgado-Charro MB, Roy N. Non-destructive, reverse iontophoretic extraction of phytochemicals from Mangifera indica, Centella asiatica, Punica granatum, and Citrus sinensis. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:408-413. [PMID: 36971356 DOI: 10.1002/pca.3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 06/03/2023]
Abstract
For the commercial-scale isolation of phytochemicals, a suitable plant biomass source (including species, origin, growing season, etc.) must be identified, and frequent analytical verification is required to ensure that the phytochemicals are present at predefined minimum threshold concentrations. While the latter are typically assessed in the laboratory, a more efficient and less resource-intensive approach would involve non-destructive and environmentally friendly measurements in situ. Reverse iontophoretic (RI) sampling offers a potential solution to this challenge. OBJECTIVE We aimed to demonstrate the non-destructive, RI sampling of phytochemicals of interest from biomass from four different sources. MATERIALS AND METHODS RI experiments were performed in side-by-side diffusion cells using a current density of 0.5 mA/cm2 , for a predetermined time in a defined pH environment, using (1) fresh leaves from Mangifera indica and Centella asiatica and (2) isolated peel from Punica granatum and Citrus sinensis. RESULTS Mangiferin, madecassoside, punicalagin, ellagic acid, and hesperidin were extracted from the different biomasses by RI. The amounts extracted ranged from 0.03 mg/100 mg of biomass for the cathodal extraction of madecassoside to 0.63 mg/100 mg of biomass for the anodal extraction of punicalagin. A linear relationship (r2 = 0.73) between the RI-extracted quantities of punicalagin and those determined using conventional methods was demonstrated. CONCLUSION The non-destructive, in situ measurement of phytochemical levels by RI represents a feasible approach for timing the harvesting process.
Collapse
Affiliation(s)
- Joan Eilstein
- L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
- L'Oréal Research and Innovation, Aulnay-Sous-Bois, France
| | - Vimal Nair
- L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Kieran Moore
- Department of Life Sciences, University of Bath, Bath, UK
| | - Steve Thomas Pannakal
- L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | | | - Prashant Ekhar
- L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| | - Richard H Guy
- Department of Life Sciences, University of Bath, Bath, UK
| | | | - Nita Roy
- L'Oréal Research and Innovation India, Bearys Global Research Triangle, Bangalore, India
| |
Collapse
|
4
|
Moore K, Reeksting SB, Nair V, Pannakal ST, Roy N, Eilstein J, Grégoire S, Delgado-Charro MB, Guy RH. Extraction of phytochemicals from the pomegranate ( Punica granatum L., Punicaceae) by reverse iontophoresis. RSC Adv 2023; 13:11261-11268. [PMID: 37057274 PMCID: PMC10087384 DOI: 10.1039/d3ra01242e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Plant metabolic profiling can provide a wealth of information regarding the biochemical status of the organism, but sample acquisition typically requires an invasive and/or destructive extraction process. Reverse iontophoresis (RI) imposes a small electric field across a biological membrane to substantially enhance the transport of charged and polar compounds and has been employed, in particular, to extract biomarkers of interest across human skin. The objective of this work was to examine the capability of RI to sample phytochemicals in a minimally invasive fashion in fructo (i.e., from the intact fruit). RI was principally used to extract a model, bioactive compound - specifically, ellagic acid - from the fruit peel of Punica granatum L. The RI sampling protocol was refined using isolated peel, and a number of experimental factors were examined and optimised, including preparation of the peel samples, the current intensity applied and the pH of the medium into which samples were collected. The most favourable conditions (3 mA current for a period of 1 hour, into a buffer at pH 7.4) were then applied to the successful RI extraction of ellagic acid from intact pomegranates. Multiple additional phytochemicals were also extracted and identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). A successful proof-of-concept has been achieved, demonstrating the capability to non-destructively extract phytochemicals of interest from intact fruit.
Collapse
Affiliation(s)
- Kieran Moore
- Department of Life Sciences, University of Bath UK
| | | | - Vimal Nair
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Steve T Pannakal
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Nita Roy
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | - Joan Eilstein
- Advanced Research, L'Oréal Research and Innovation India Bangalore India
| | | | | | | |
Collapse
|
5
|
Perdomo SA, De la Paz E, Del Caño R, Seker S, Saha T, Wang J, Jaramillo-Botero A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens Bioelectron 2023; 231:115300. [PMID: 37058961 DOI: 10.1016/j.bios.2023.115300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(μM·cm2), a limit of detection (LOD) of 9.4 μM, and a limit of quantification (LOQ) of 28.5 μM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Rafael Del Caño
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E- 14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Tamoghna Saha
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States.
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
6
|
Zheng H, Pu Z, Wu H, Li C, Zhang X, Li D. Reverse iontophoresis with the development of flexible electronics: A review. Biosens Bioelectron 2023; 223:115036. [PMID: 36580817 DOI: 10.1016/j.bios.2022.115036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Skin-centric diagnosis techniques, such as epidermal physiological parameter monitoring, have developed rapidly in recent years. The analysis of interstitial fluid (ISF), a body liquid with abundant physiological information, is a promising method to obtain health status because ISF is easily assessed by implanted or percutaneous measurements. Reverse iontophoresis extracts ISF by applying an electric field onto the skin, and it is a promising method to noninvasively obtain ISF, which, in turn, enables noninvasive epidermal physiological parameter monitoring. However, the development of reverse iontophoresis was relatively slow around the 2010s due to the rigidity and low biocompatibility of the applied devices. With the rapid development of flexible electronic technology in recent years, new progress has been made in the field of reverse iontophoresis, especially in the field of blood glucose monitoring and drug monitoring. This review summarizes the recent advances and discusses the challenges and opportunities of reverse iontophoresis.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| | - Hao Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
Ruiz-Gonzalez A, Kempson H, Haseloff J. A Simple Reversed Iontophoresis-Based Sensor to Enable In Vivo Multiplexed Measurement of Plant Biomarkers Using Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:780. [PMID: 36679574 PMCID: PMC9863583 DOI: 10.3390/s23020780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The direct quantification of plant biomarkers in sap is crucial to enhancing crop production. However, current approaches are inaccurate, involving the measurement of non-specific parameters such as colour intensity of leaves, or requiring highly invasive processes for the extraction of sap. In addition, these methods rely on bulky and expensive equipment, and they are time-consuming. The present work reports for the first time a low-cost sensing device that can be used for the simultaneous determination of sap K+ and pH in living plants by means of reverse iontophoresis. A screen-printed electrode was modified by deposition of a K+-selective membrane, achieving a super-Nernstian sensitivity of 70 mV Log[K+]−1 and a limit of detection within the micromolar level. In addition, the cathode material of the reverse iontophoresis device was modified by electrodeposition of RuOx particles. This electrode could be used for the direct extraction of ions from plant leaves and the amperometric determination of pH within the physiological range (pH 3−8), triggered by the selective reaction of RuOx with H+. A portable and low-cost (<£60) microcontroller-based device was additionally designed to enable its use in low-resource settings. The applicability of this system was demonstrated by measuring the changes in concentration of K+ and pH in tomato plants before and after watering with deionised water. These results represent a step forward in the design of affordable and non-invasive devices for the monitoring of key biomarkers in plants, with a plethora of applications in smart farming and precision agriculture among others.
Collapse
|
8
|
In vivo electrochemically-assisted polymerization of conjugated functionalized terthiophenes inside the vascular system of a plant. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Yang L, Chen D, Wang X, Luo B, Wang C, Gao G, Li H, Li A, Chen L. Ratiometric electrochemical sensor for accurate detection of salicylic acid in leaves of living plants. RSC Adv 2020; 10:38841-38846. [PMID: 35518421 PMCID: PMC9057353 DOI: 10.1039/d0ra05813k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022] Open
Abstract
Detection of signal molecules in living plants is of great relevance for precision farming. In this work, to establish a more effective method for monitoring salicylic acid (SA) in the leaves of living plants, a ratiometric electrochemical sensor was fabricated based on a Cu metal-organic framework (Cu-MOF) and carbon black (CB) composite. The Cu-MOF and CB composite was used to catalyze SA oxidation. Ratiometric oxidation current peak intensities I SA/I Cu-MOFs were used as the response signal for SA. I SA/I Cu-MOFs linearly enhanced with the increase of SA concentration, together with low limits of detection (12.50 μM). Moreover, our sensor is fabricated on a screen-printed electrode (SPE), which is especially suitable for applying to the flat leaves of plants. Using this sensor, the SA level in the leaves of cucumber seedlings was monitored in vivo under salt stress. The proposed sensor is accurate, reliable and practical. This is the first report for developing a ratiometric electrochemical sensor for detecting SA in living plants. Our work can also provide a strategy for in vivo studies on the leaves of plants.
Collapse
Affiliation(s)
- Lei Yang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- College of Electronic and Information Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Xiaodong Wang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Bin Luo
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Cheng Wang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| | - Guangheng Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Biosensors of Shandong Province Jinan 250353 China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Aixue Li
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| | - Liping Chen
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
10
|
Digitalized pencil trace modified electrodes for real time evaluation of salicylic acid in detached Arabidopsis thaliana leaves during regeneration. Anal Chim Acta 2020; 1120:59-66. [DOI: 10.1016/j.aca.2020.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/23/2023]
|
11
|
Chen C, Feng S, Zhou M, Ji C, Que L, Wang W. Development of a structure-switching aptamer-based nanosensor for salicylic acid detection. Biosens Bioelectron 2019; 140:111342. [PMID: 31153018 DOI: 10.1016/j.bios.2019.111342] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
Salicylic acid (SA) is a phytohormone regulating immune responses against pathogens. SA and its derivatives can be found in diverse food products, medicines, cosmetics and preservatives. While salicylates have potential disease-preventative activity, they can also cause health problems to people who are hypersensitive. The current SA detection methods are costly, labor-intensive and require bulky instruments. In this study, a structure-switching aptamer-based nanopore thin film sensor was developed for cost-effective, rapid, sensitive and simple detection of SA in both buffer and plant extracts. SA is a challenging target for aptamer selection using conventional systemic evolution of ligands by exponential enrichment (SELEX) due to its small size and scarcity of reactive groups for immobilization. By immobilizing the SELEX library instead of SA and screening the library using a structure-switching SELEX approach, a high affinity SA aptamer was identified. The nanopore thin film sensor platform can detect as low as 0.1 μM SA. This is much better than the sensitivity of antibody-based detection method. This nanosensor also exhibited good selectivity among SA and its common metabolites and can detect SA in Arabidopsis and rice using only about 1 μl plant extracts within less than 30 min. The integration of SA aptamer and nanopore thin film sensor provides a promising solution for low-cost, rapid, sensitive on-site detection of SA.
Collapse
Affiliation(s)
- Changtian Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Silu Feng
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
| | - Mian Zhou
- School of Life Sciences, Capital Normal University, Beijing, China
| | - Chonghui Ji
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Long Que
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA.
| | - Wei Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Peking University - Tsinghua University Joint Center for Life Sciences, Beijing, China; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
12
|
Gómez-Monedero B, González-Sánchez MI, Iniesta J, Agrisuelas J, Valero E. Design and Characterization of Effective Ag, Pt and AgPt Nanoparticles to H₂O₂ Electrosensing from Scrapped Printed Electrodes. SENSORS 2019; 19:s19071685. [PMID: 30970580 PMCID: PMC6479472 DOI: 10.3390/s19071685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
Abstract
The use of disposable screen-printed electrodes (SPEs) has extraordinarily grown in the last years. In this paper, conductive inks from scrapped SPEs were removed by acid leaching, providing high value feedstocks suitable for the electrochemical deposition of Ag, Pt and Ag core-Pt shell-like bimetallic (AgPt) nanoparticles, onto screen-printed carbon electrodes (ML@SPCEs, M = Ag, Pt or AgPt, L = metal nanoparticles from leaching solutions). ML@SPCEs were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The results were compared to those obtained when metal nanoparticles were synthesised using standard solutions of metal salts (MS@SPCEs). Both ML@SPCEs and MS@SPCEs exhibited similar cyclic voltammetric patterns referred to the electrochemical stripping of silver or the adsorption/desorption of hydrogen/anions in the case of platinum, proving leaching solutions extremely effective for the electrodeposition of metallic nanoparticles. The use of both ML@SPCEs and MS@SPCEs proved effective in enhancing the sensitivity for the detection of H₂O₂ in phosphate buffer solutions (pH = 7). The AgPtL@SPCE was used as proof of concept for the validation of an amperometric sensor for the determination of H₂O₂ within laundry boosters and antiseptic samples. The electrochemical sensor gave good agreement with the results obtained by a spectrophotometric method with H₂O₂ recoveries between 100.6% and 106.4%.
Collapse
Affiliation(s)
- Beatriz Gómez-Monedero
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María-Isabel González-Sánchez
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Jesús Iniesta
- Department of Physical Chemistry, Institute of Electrochemistry, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain.
| | - Jerónimo Agrisuelas
- Department of Physical Chemistry, Faculty of Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain.
| | - Edelmira Valero
- Department of Physical Chemistry, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
13
|
Rawlinson S, McLister A, Kanyong P, Davis J. Rapid determination of salicylic acid at screen printed electrodes. Microchem J 2018. [DOI: 10.1016/j.microc.2017.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
A Comparative Study of Poly(Azure A) Film-Modified Disposable Electrodes for Electrocatalytic Oxidation of H₂O₂: Effect of Doping Anion. Polymers (Basel) 2018; 10:polym10010048. [PMID: 30966084 PMCID: PMC6414827 DOI: 10.3390/polym10010048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/17/2022] Open
Abstract
In the present paper, poly(azure A) (PAA) films were electrosynthetized in the presence of different doping anions on disposable screen-printed carbon electrodes (SPCEs). The anions used included inorganic monoatomic (chloride and fluoride), inorganic polyatomic (nitrate and sulfate) and organic polyatomic (dodecyl sulfate, DS) species. The coated electrodes thus obtained were characterized by electrochemical techniques and SEM. They showed improved electrocatalytic activities towards hydrogen peroxide oxidation compared to that of a bare SPCE. In particular, the insertion of DS anions inside PAA films provided a special sensitivity to the electrocatalysis of H2O2, which endowed these electrodes with promising analytical features for H2O2 quantification. We obtained a wide linear response for H2O2 within a range of 5 µM to 3 mM and a limit of detection of 1.43 ± 0.10 µM (signal-to-noise ratio of 3). Furthermore, sensitivity was 72.4 ± 0.49 nA·µM−1∙cm−2 at a relatively low electrocatalytic oxidation overpotential of 0.5 V vs. Ag. The applicability of this boosted system was tested by the analysis of H2O2 in commercial samples of a hair lightener and an antiseptic and was corroborated by spectrophotometric methods.
Collapse
|
15
|
Hu Y, Zhao J, Li H, Wang X, Hou P, Wang C, Li A, Chen L. In vivo detection of salicylic acid in sunflower seedlings under salt stress. RSC Adv 2018; 8:23404-23410. [PMID: 35540139 PMCID: PMC9081611 DOI: 10.1039/c8ra03475c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
A Pt nanoflowers/ERGO modified Pt microelectrode was proposed to detect salicylic acid in plants under salt stress in vivo.
Collapse
Affiliation(s)
- Ye Hu
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| | - Jing Zhao
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Department of Environmental Science and Engineering
| | - Haiyang Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| | - Liping Chen
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- P. R. China
- Beijing Research Center for Information Technology in Agriculture
| |
Collapse
|
16
|
Sánchez MIG, McCullagh J, Guy RH, Compton RG. Reverse Iontophoretic Extraction of Metabolites from Living Plants and their Identification by Ion-chromatography Coupled to High Resolution Mass Spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:195-201. [PMID: 28029194 DOI: 10.1002/pca.2660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/14/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION The identification and characterisation of cellular metabolites has now become an important strategy to obtain insight into functional plant biology. However, the extraction of metabolites for identification and analysis is challenging and, at the present time, usually requires destruction of the plant. OBJECTIVE To detect different plant metabolites in living plants with no pre-treatment using the combination of iontophoresis and ion-chromatography with mass spectrometry detection. METHODOLOGY In this work, the simple and non-destructive method of reverse iontophoresis has been used to extract in situ multiple plant metabolites from intact Ocimum basilicum leaves. Subsequently, the analysis of these metabolites has been performed with ion chromatography coupled directly to high resolution mass spectrometric detection (IC-MS). RESULTS The application of reverse iontophoresis to living plant samples has avoided the need for complex pre-treatments. With this approach, no less than 24 compounds, including organic acids and sugars as well as adenosine triphosphate (ATP) were successfully detected. CONCLUSION The research demonstrates that it is feasible to monitor, therefore, a number of important plant metabolites using a simple, relatively fast and non-destructive approach. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Maria Isabel González Sánchez
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Physical Chemistry, Castilla-La Mancha University, 02071, Albacete, Spain
| | - James McCullagh
- Mass Spectrometry Research Facility CRL, Department of Chemistry, Oxford University, Mansfield Road, Oxford, UK
| | - Richard H Guy
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
17
|
González-Sánchez MI, Agrisuelas J, Valero E, Compton RG. Measurement of Total Antioxidant Capacity by Electrogenerated Iodine at Disposable Screen Printed Electrodes. ELECTROANAL 2017. [DOI: 10.1002/elan.201600797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- María Isabel González-Sánchez
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Jerónimo Agrisuelas
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Edelmira Valero
- Department of Physical Chemistry, School of Industrial Engineering; University of Castilla-La Mancha, Campus Universitario s/n; 02071 Albacete Spain
| | - Richard G. Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory; University of Oxford; South Parks Road Oxford OX1 3QZ United Kingdom
| |
Collapse
|