1
|
Kikushima K, Komiyama K, Umekawa N, Yamada K, Kita Y, Dohi T. Silver-Catalyzed Coupling of Unreactive Carboxylates: Synthesis of α-Fluorinated O-Aryl Esters. Org Lett 2024; 26:5347-5352. [PMID: 38885467 DOI: 10.1021/acs.orglett.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
α-Fluorinated aryl esters pose a challenge in synthesis via O-arylation of α-fluorinated carboxylates owing to their low reactivities. This limitation has been addressed by combining a silver catalyst with aryl(trimethoxyphenyl)iodonium tosylates to access α-fluorinated aryl esters. We envision that the catalytic system involves high-valent aryl silver species generated via the oxidation of silver(I) salt. The present method provided a synthetic protocol for various α-fluorinated aryl esters including fluorinated analogs of drug derivatives.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Keina Komiyama
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Narumi Umekawa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Kohei Yamada
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
2
|
Kim HE, Choi JH, Chung WJ. Fluorine-Assisted Rearrangement of Geminal Azidofluorides to Imidoyl Fluorides. J Org Chem 2023. [PMID: 37130141 DOI: 10.1021/acs.joc.3c00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organoazide rearrangement constitutes versatile synthetic strategies but typically requires an extremely strong acid and/or a high reaction temperature. Our group recently discovered the remarkable accelerating effect of the geminal fluorine substituent that enables the facile rearrangement of azides into imidoyl fluorides without the aid of acid under much milder reaction conditions. The role of geminal fluorine was elucidated by both experimental and computational investigations. This new reactivity led to the development of a practical one-step tandem preparative method for potentially useful and bench-stable imidoyl fluorides from a wide range of structurally diverse geminal chlorofluorides. Our additional efforts to expand the reaction scope regarding the migrating group, halogen, and carbonyl function are described, and the synthetic utility of the imidoyl fluoride products was demonstrated in hopes of promoting the use of this under-appreciated functional group in the synthetic organic community.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Gutiérrez-Bonet Á, Liu W. Synthesis of Alkyl Fluorides and Fluorinated Unnatural Amino Acids via Photochemical Decarboxylation of α-Fluorinated Carboxylic Acids. Org Lett 2023; 25:483-487. [PMID: 36652608 DOI: 10.1021/acs.orglett.2c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leveraging α-fluoroalkyl or fluorobenzyl radicals to introduce fluorinated motifs allows for the rapid preparation of fluorine-containing building blocks. Herein, we report the generation of α-fluoroalkyl or fluorobenzyl radicals from readily available α-fluorocarboxylic acids under mild reaction conditions and their utilization in the Giese-type addition on Michael acceptors and dehydroamino acids, resulting in the preparation of mono- and difluorinated Michael addition adducts and unnatural fluorinated amino acids.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Bonet
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wenbin Liu
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
4
|
Regioselective transformation of terminal and internal alkynes into α,α-difluoro ketones under mild conditions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Tan JF, Bormann CT, Severin K, Cramer N. Chemo- and regio-divergent access to fluorinated 1-alkyl and 1-acyl triazenes from alkynyl triazenes. Chem Sci 2022; 13:3409-3415. [PMID: 35432853 PMCID: PMC8943902 DOI: 10.1039/d2sc00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
The 1,1,2,2-tetrafluoroethylene unit is a prevalent pattern in bioactive molecules and functional materials. Despite being in principle a straightforward strategy to access this motif, the direct tetrafluorination of alkynes involves...
Collapse
Affiliation(s)
- Jin-Fay Tan
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Carl Thomas Bormann
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, EPFL SB ISIC LCS, BCH 3307 CH-1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
6
|
Abstract
In this review, the development of trifunctionalization methods for alkenes and alkynes, including arynes and allenes, over the last decade is disclosed.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Dipti Lai
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| | - Alakananda Hajra
- Department of Chemistry
- Visva-Bharati (A Central University)
- Santiniketan 731235
- India
| |
Collapse
|
7
|
Zhu X, Wang Z, Hou B, Zhang H, Deng C, Ye L. Zinc‐Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2
H
‐Azepines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Bo‐Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao‐Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Zhu XQ, Wang ZS, Hou BS, Zhang HW, Deng C, Ye LW. Zinc-Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2H-Azepines. Angew Chem Int Ed Engl 2019; 59:1666-1673. [PMID: 31724314 DOI: 10.1002/anie.201912534] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5-7-membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl-anion- and triene-type 6π electrocyclizations. Described herein is a zinc-catalyzed formal [4+3] annulation of isoxazoles with 3-en-1-ynol ethers via 6π electrocyclization, leading to the site-selective synthesis of functionalized 2H-azepines and 4H-azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H-azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl-cation-type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo-Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao-Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
He T, Li B, Liu LC, Wang J, Ma WP, Li GY, Zhang QW, He W. Copper-Catalyzed Trifunctionalization of Alkynes: Rapid Formation of Oxindoles Bearing Geminal Diboronates. Chemistry 2019; 25:966-970. [PMID: 30324715 DOI: 10.1002/chem.201804480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 11/09/2022]
Abstract
A copper-catalyzed trifunctionalization of alkynes that provides rapid access to oxindoles bearing a geminal diboronate side chain, highlighted by the simultaneous formation of one C-C bond and two C-B bonds, is reported. This new reaction features simple reaction conditions (ligand-free catalysis), a general substrate scope, and excellent chemoselectivity. Mechanistic study revealed a reaction sequence constituted by, in the order, borylation, intramolecular cross-coupling, hydroboration, which has been rarely documented.
Collapse
Affiliation(s)
- Tao He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Li-Chuan Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Peng Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Guang-Yu Li
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, P. R. China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Wei Q, Ma Y, Li L, Liu Q, Liu Z, Liu G. Synthesis of Quaternary α-Fluorinated α-Amino Acid Derivatives via Coordinating Cu(II) Catalytic α-C(sp 3)-H Direct Fluorination. Org Lett 2018; 20:7100-7103. [PMID: 30362773 DOI: 10.1021/acs.orglett.8b03044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A coordinating, copper-catalyzed direct α-C(sp3)-H fluorination method has been developed to prepare vital quaternary α-fluorinated α-amino acid derivatives. A Cu(II) catalytic SET oxidative addition mechanism is proposed, involving a key fluoride-coupled Cu(II) charge transfer complex. The protocol can tolerate a rich variety of α-amino acids, for which the auxiliary group is removed in high yield and substituted for the direct preparation of dipeptide derivatives with detachable, single absolute configurations of the target compounds.
Collapse
Affiliation(s)
- Qiang Wei
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Li Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Qingfei Liu
- School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| | - Zijie Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Gang Liu
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences , Tsinghua University , Beijing 100084 , China.,School of Pharmaceutical Sciences , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
11
|
Yu W, Ouyang Y, Xu XH, Qing FL. Visible Light-Induced Methoxycarbonyldifluoromethylation of Trimethylsilyl Enol Ethers and Allyltrimethylsilanes with FSO2
CF2
CO2
Me. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Yu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu, Shanghai 201620 China
| |
Collapse
|
12
|
Gibson SM, D'Oyley JM, Higham JI, Sanders K, Laserna V, Aliev AE, Sheppard TD. Dihalohydration of Alkynols: A Versatile Approach to Diverse Halogenated Molecules. European J Org Chem 2018; 2018:4018-4028. [PMID: 30147439 PMCID: PMC6099344 DOI: 10.1002/ejoc.201800668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 11/28/2022]
Abstract
In this paper we outline how dihalohydration reactions of propargylic alcohols can be used to access a wide variety of useful halogenated building blocks. A novel procedure for dibromohydration of alkynes has been developed, and a selection of dichloro and dibromo diols and cyclic ethers were synthesized. The dihalohydration of homo-propargylic alcohols provides a useful route to 3-halofurans, which were shown to readily undergo cycloaddition reactions under mild conditions. Finally, a novel ring expansion of propargylic alcohols containing a cyclopropylalkyne provides access to halogenated alkenylcyclobutanes.
Collapse
Affiliation(s)
- Samantha M. Gibson
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Jarryl M. D'Oyley
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Joe I. Higham
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Kate Sanders
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Victor Laserna
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Abil E. Aliev
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| | - Tom D. Sheppard
- Christopher Ingold LaboratoriesUniversity College London20 Gordon St, LondonWC1H 0AJUK
| |
Collapse
|
13
|
Naveen N, Balamurugan R. Catalyst free synthesis of α-fluoro-β-hydroxy ketones/α-fluoro-ynols via electrophilic fluorination of tertiary propargyl alcohols using Selectfluor™ (F-TEDA-BF4). Org Biomol Chem 2017; 15:2063-2072. [DOI: 10.1039/c7ob00140a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile access to α-fluoro-β-hydroxyketones via electrophilic fluorination.
Collapse
|
14
|
Zhu H, Jin W, He J, Zhang Y, Zhu G. Synthesis of (E)-α,β-Unsaturated CarbonylsviaSilver-Catalyzed Tandem Epoxide Rearrangement/Intermolecular Carbonyl- Heteroalkyne Metathesis. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hui Zhu
- Department of Chemistry; Zhejiang Normal University; 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Weiwei Jin
- Department of Chemistry; Zhejiang Normal University; 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Jiayao He
- Department of Chemistry; Zhejiang Normal University; 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Yan Zhang
- Department of Chemistry; Zhejiang Normal University; 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Gangguo Zhu
- Department of Chemistry; Zhejiang Normal University; 688 Yingbin Road Jinhua 321004 People's Republic of China
| |
Collapse
|
15
|
Ulbrich D, Daniliuc CG, Haufe G. Synthesis of α,ω-polyfluorinated α-amino acid derivatives and δ,δ-difluoronorvaline. Org Biomol Chem 2016; 14:2755-67. [PMID: 26857261 DOI: 10.1039/c6ob00131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intending to synthesize ω,ω-difluoroalkyl amino acid derivatives by oxidative desulfurization-fluorination reactions of suitable arylthio-2-phthalimido butanoates and pentanoates, in addition to small amounts of the target products, mainly α,ω-polyfluorinated amino acid derivatives were formed by additional sulfur-assisted α-fluorination. This novel structural motif was verified spectroscopically as well as by X-ray analysis. A plausible mechanism of formation is suggested. Using a different approach, δ,δ-difluoronorvaline hydrochloride was synthesized with at least 36% enantiomeric excess via deoxofluorination of the corresponding aldehyde.
Collapse
Affiliation(s)
- Dirk Ulbrich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, D-48149 Münster, Germany. and Cells-in-Motion Cluster of Excellence, Westfälische Wilhelms-Universität, Waldeyerstraße 15, D-48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, D-48149 Münster, Germany.
| | - Günter Haufe
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, D-48149 Münster, Germany. and Cells-in-Motion Cluster of Excellence, Westfälische Wilhelms-Universität, Waldeyerstraße 15, D-48149 Münster, Germany
| |
Collapse
|
16
|
Minami Y, Noguchi Y, Yamada K, Hiyama T. Intramolecular Hydroalkylation via Activation oftert-Butyl C–H Bond in Silylethynyl Aryl Ethers. CHEM LETT 2016. [DOI: 10.1246/cl.160618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Yu W, Xu XH, Qing FL. Photoredox Catalysis Mediated Application of Methyl Fluorosulfonyldifluoroacetate as the CF2CO2R Radical Source. Org Lett 2016; 18:5130-5133. [DOI: 10.1021/acs.orglett.6b02580] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Yu
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
18
|
Ulbrich D, Daniliuc CG, Haufe G. Halofluorination of N-protected α,β-dehydro-α-amino acid esters—A convenient synthesis of α-fluoro-α-amino acid derivatives. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Hu L, Gui Q, Chen X, Tan Z, Zhu G. HOTf-Catalyzed, Solvent-Free Oxyarylation of Ynol Ethers and Thioethers. J Org Chem 2016; 81:4861-8. [PMID: 27163354 DOI: 10.1021/acs.joc.6b00535] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel HOTf-catalyzed oxyarylation of ynol ethers and thioethers has been realized with aryl sulfoxides as the oxyarylating reagents, providing α-arylated esters or thioesters in good to excellent yields. Notably, all atoms of the starting materials were incorporated in the product (100% atom economy) and the reaction proceeded under very mild conditions. It was found that the reaction can be ran under air and that the best yields are obtained under solvent-free conditions.
Collapse
Affiliation(s)
- Liang Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Qingwen Gui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Xiang Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University , Changsha 410082, P. R. China
| | - Gangguo Zhu
- Department of Chemistry, Zhejiang Normal University , 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
20
|
Abstract
Alkynyl ethers and thioethers are versatile building blocks in organic synthesis allowing various transformations including a number of C–C bond forming processes.
Collapse
|