1
|
Todd ZR, Lozano GG, Kufner CL, Ranjan S, Catling DC, Sasselov DD. UV Transmission in Prebiotic Environments on Early Earth. ASTROBIOLOGY 2024; 24:559-569. [PMID: 38768432 DOI: 10.1089/ast.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Department of Chemistry, Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriella G Lozano
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Corinna L Kufner
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Dimitar D Sasselov
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
He C, Thomas AM, Dangi BB, Yang T, Kaiser RI, Lee HC, Sun BJ, Chang AHH. Formation of the Elusive Silylenemethyl Radical (HCSiH 2; X 2B 2) via the Unimolecular Decomposition of Triplet Silaethylene (H 2CSiH 2; a 3A″). J Phys Chem A 2022; 126:3347-3357. [PMID: 35584043 DOI: 10.1021/acs.jpca.2c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Huan-Cheng Lee
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| |
Collapse
|
3
|
Potapov A, Fulvio D, Krasnokutski S, Jäger C, Henning T. Formation of Complex Organic and Prebiotic Molecules in H 2O:NH 3:CO 2 Ices at Temperatures Relevant to Hot Cores, Protostellar Envelopes, and Planet-Forming Disks. J Phys Chem A 2022; 126:1627-1639. [PMID: 35245052 DOI: 10.1021/acs.jpca.1c10188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photochemistry in H2O:NH3:CO2 cosmic ice analogues was studied at temperatures of 75, 120, and 150 K, relevant to hot cores and warmer regions in protostellar envelopes and planet-forming disks. A combination of two triggers of surface chemistry in cosmic ice analogues, heat and UV irradiation, compared to using either just heat or UV irradiation, leads to a larger variety and an increased production of complex organic molecules, including potential precursors of prebiotic molecules. In addition to complex organic molecules detected in previous studies of H2O:NH3:CO2 ices, ammonium carbamate, carbamic acid, ammonium formate and formamide, we detected acetaldehyde, urea, and, tentatively, glycine, the simplest amino acid. Water ice hampers reactions at low temperature (75 K) but allows the parent molecules, CO2 and NH3, to stay in the solid state and react at higher temperatures (120 and 150 K, above their desorption temperatures). The experiments were performed on the surface of KBr substrates and amorphous silicate grains, analogs of cosmic silicate dust. The production of complex molecules on the silicate surface is decreased compared to KBr. This result suggests that the larger surface area and/or surface properties of the silicate grains play a role in controlling the chemistry, preventing it taking place to the same extent as on the flat KBr substrate. This is further evidence of the fact that cosmic dust grains play an important role in the chemistry taking place on their surface.
Collapse
Affiliation(s)
- Alexey Potapov
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
| | - Daniele Fulvio
- Osservatorio Astronomico di Capodimonte, Istituto Nazionale di Astrofisica, Salita Moiariello 16, 80131, Naples, Italy.,Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
| | - Serge Krasnokutski
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
| | - Cornelia Jäger
- Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
| | - Thomas Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
| |
Collapse
|
4
|
Volosatova AD, Lukianova MA, Zasimov PV, Feldman VI. Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1 : 1 CH 4HCN complex at cryogenic temperatures: is it a missing link between inorganic and prebiotic astrochemistry? Phys Chem Chem Phys 2021; 23:18449-18460. [PMID: 34612385 DOI: 10.1039/d1cp01598b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitriles are important constituents of extraterrestrial media. Nitriles are supposed to play a crucial role in prebiotic chemistry occurring in the interstellar medium. In this work, we have investigated the low-temperature radiation-induced transformations of a 1 : 1 CH4HCN complex as a plausible precursor of the simplest nitriles using the matrix isolation approach with FTIR spectroscopic detection. The parent complexes isolated in a noble gas (Ng) matrix were obtained by deposition of the CH4/HCN/Ng gaseous mixture and characterized by comparison of experimental complexation-induced shifts of the HCN fundamentals with the results of the ab initio calculations. It was found that the X-ray irradiation of low-temperature matrices containing the isolated 1 : 1 CH4HCN complex resulted in the formation of acetonitrile (CH3CN) and isoacetonitrile (CH3NC) and it appears to be the first experimental evidence for the formation of C2 nitriles (acetonitrile and isoacetonitrile) from such a "building block". Additionally, a 1 : 1 CH4HNC complex was tentatively assigned to the irradiated Ar and Kr matrices. It is demonstrated that the matrix has a strong effect on the CH3CN/CH3NC yield ratio, which dramatically increases in the row Ar < Kr < Xe. Also, the efficiency of the radiation-induced formation of the CH4HNC complex was shown to decrease from Ar to Kr. It is believed that the proposed pathway for acetonitrile formation may be a significant step in the radiation-induced evolution leading to complex organic molecules and biomolecules under astrochemical conditions. Furthermore, the obtained results provide a prominent example of the impact of very weak intermolecular interactions on the radiation-induced transformations in cold media.
Collapse
|
5
|
Turner AM, Kaiser RI. Exploiting Photoionization Reflectron Time-of-Flight Mass Spectrometry to Explore Molecular Mass Growth Processes to Complex Organic Molecules in Interstellar and Solar System Ice Analogs. Acc Chem Res 2020; 53:2791-2805. [PMID: 33258604 DOI: 10.1021/acs.accounts.0c00584] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusThis Account presents recent advances in our understanding on the formation pathways of complex organic molecules (COMs) within interstellar analog ices on ice-coated interstellar nanoparticles upon interaction with ionizing radiation exploiting reflectron time-of-flight mass spectrometry (ReTOF-MS) coupled with tunable vacuum ultraviolet (VUV) single photon ionization (PI) and resonance enhanced multiphoton ionization (REMPI) of the subliming molecules during the temperature-programmed desorption (TPD) phase. Laboratory simulation experiments provided compelling evidence that key classes of complex organics (aromatic hydrocarbons, alcohols, ethers, aldehydes, enols, ketones, and carboxylic acids) can be synthesized upon exposure of astrophysically relevant model ices to ionizing radiation within and throughout the ices at temperatures as low as 5 K.Molecular mass growth processes can be initiated by suprathermal or electronically excited reactants along with barrierless radical-radical recombination if both radicals hold a proper recombination geometry. Methyl (CH3), amino (NH2), hydroxyl (OH), ethyl (C2H5), vinyl (C2H3), ethynyl (C2H), formyl (HCO), hydroxycarbonyl (HOCO), hydroxymethyl (CH2OH), methoxy (CH3O), and acetyl (CH3CO) represent readily available reactants for radical-radical recombination within the ices. Reactive singlet species were found to insert without barrier into carbon-hydrogen and carbon-carbon single bonds (carbene) leading to an extension of the carbon chain and may add to carbon-carbon double bonds (carbene, atomic oxygen) forming cyclic reaction products. These galactic cosmic ray-triggered nonequilibrium pathways overcome previous obstacles of hypothesized thermal grain-surface processes and operate throughout the ice at 5 K. Our investigations discriminate between multiple structural isomers such as alcohols/ethers, aldehydes/enols, and cyclic/acyclic carbonyls. These data provide quantitative, isomer selective input parameters for a cosmic ray-dictated formation of complex organics in interstellar ices and are fully able to replicate the astronomical observations of complex organics over typical lifetimes of molecular clouds of a few 106 to 107 years. Overall, PI-ReTOF-MS revealed that the processing of astrophysically relevant ices can lead to multifaceted mixtures of organics reaching molecular weights of up to 200 amu. Further advances in laboratory techniques beyond the FTIR-QMS limit are clearly desired not only to confidently assign detection in laboratory ice analog experiments of increasingly more complex molecules of interest but also from the viewpoint of future astronomical searches in the age of the Atacama Large Millimeter/submillimeter Array (ALMA).
Collapse
Affiliation(s)
- Andrew M. Turner
- Department of Chemistry and W.M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I. Kaiser
- Department of Chemistry and W.M. Keck Research Laboratory in Astrochemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
6
|
Mondal A, Hazra A, Chakrabarty J, Bose K JC, Banerjee P. Tandem Detection of Sub-Nano Molar Level CN - and Hg 2+ in Aqueous Medium by a Suitable Molecular Sensor: A Viable Solution for Detection of CN - and Development of the RGB-Based Sensory Device. ACS OMEGA 2020; 5:6576-6587. [PMID: 32258893 PMCID: PMC7114731 DOI: 10.1021/acsomega.9b04311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 05/04/2023]
Abstract
An inimitable urea-based multichannel chemosensor, DTPH [1,5-bis-(2,6-dichloro-4-(trifluoromethyl)phenyl)carbonohydrazide], was examined to be highly proficient to recognize CN- based on the H-bonding interaction between sensor -NH moiety and CN- in aqueous medium with explicit selectivity. In the absorption spectral titration of DTPH, a new peak at higher wavelength was emerged in titrimetric analytical studies of CN- with the zero-order reaction kinetics affirming the substantial sensor-analyte interaction. The isothermal titration calorimetry (ITC) experiment further affirmed that the sensing process was highly spontaneous with the Gibbs free energy of -26 × 104 cal/mol. The binding approach between DTPH and CN- was also validated by more than a few experimental studies by means of several spectroscopic tools along with the theoretical calculations. A very low detection limit of the chemosensor toward CN- (0.15 ppm) further instigated to design an RGB-based sensory device based on the colorimetric upshots of the chemosensor in order to develop a distinct perception regarding the presence of innocuous or precarious level of the CN- in a contaminated solution. Moreover, the reversibility of the sensor in the presence of CN- and Hg2+ originated a logic gate mimic ensemble. Additionally, the real-field along with the in vitro CN- detection efficiency of the photostable DTPH was also accomplished by using various biological specimens.
Collapse
Affiliation(s)
- Amita Mondal
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Abhijit Hazra
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Jitamanyu Chakrabarty
- Department
of Chemistry, National Institute of Technology, M. G. Avenue, Durgapur 713209, West
Bengal, India
| | - Jagadeesh C. Bose K
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Priyabrata Banerjee
- CSIR-Central
Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific & Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
7
|
Franco A, Ascenso JR, Ilharco L, Silva JALD. Synthesis of ribonucleotides from the corresponding ribonucleosides under plausible prebiotic conditions within self-assembled supramolecular structures. NEW J CHEM 2020. [DOI: 10.1039/c9nj05601g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abiotic synthesis of ribonucleotides, mainly at the 5′ position, from the corresponding ribonucleosides within guanosine:borate hydrogels in the temperature range of 70–90 °C, using urea and a phosphate source (K2HPO4 or hydroxyapatite).
Collapse
Affiliation(s)
- A. Franco
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - J. R. Ascenso
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - L. Ilharco
- IBB
- Instituto de Bioengenharia e Biociências
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - J. A. L. da Silva
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
8
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Ablikim U, Ahmed M, Sun B, Chen Y, Chang AHH, Mohamed RK, Fischer FR. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition–Dehydrocyclization: The Third Way. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | | | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bing‐Jian Sun
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Yue‐Lin Chen
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Agnes H. H. Chang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Rana K. Mohamed
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Felix R. Fischer
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
9
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Ablikim U, Ahmed M, Sun B, Chen Y, Chang AHH, Mohamed RK, Fischer FR. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition–Dehydrocyclization: The Third Way. Angew Chem Int Ed Engl 2019; 58:17442-17450. [DOI: 10.1002/anie.201909876] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | | | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bing‐Jian Sun
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Yue‐Lin Chen
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Agnes H. H. Chang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Rana K. Mohamed
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Felix R. Fischer
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
10
|
Abplanalp MJ, Kaiser RI. On the formation of complex organic molecules in the interstellar medium: untangling the chemical complexity of carbon monoxide-hydrocarbon containing ice analogues exposed to ionizing radiation via a combined infrared and reflectron time-of-flight analysis. Phys Chem Chem Phys 2019; 21:16949-16980. [PMID: 31339133 DOI: 10.1039/c9cp01793c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, over 200 molecules have been detected in the interstellar medium (ISM), with about one third being complex organic molecules (COMs), molecules containing six or more atoms. Over the last few decades, astrophysical laboratory experiments have shown that several COMs are formed via interaction of ionizing radiation within ices deposited on interstellar dust particles at 10 K (H2O, CH3OH, CO, CO2, CH4, NH3). However, there is still a lack of understanding of the chemical complexity that is available through individual ice constituents. The present research investigates experimentally the synthesis of carbon, hydrogen, and oxygen bearing COMs from interstellar ice analogues containing carbon monoxide (CO) and methane (CH4), ethane (C2H6), ethylene (C2H4), or acetylene (C2H2) exposed to ionizing radiation. Utilizing online and in situ techniques, such as infrared spectroscopy and tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), specific isomers produced could be characterized. A total of 12 chemically different groups were detected corresponding to C2HnO (n = 2, 4, 6), C3HnO (n = 2, 4, 6, 8), C4HnO (n = 4, 6, 8, 10), C5HnO (n = 4, 6, 8, 10), C6HnO (n = 4, 6, 8, 10, 12, 14), C2HnO2 (n = 2, 4), C3HnO2 (n = 4, 6, 8), C4HnO2 (n = 4, 6, 8, 10), C5HnO2 (n = 6, 8), C6HnO2 (n = 8, 10, 12), C4HnO3 (n = 4, 6, 8), and C5HnO3 (n = 6, 8). More than half of these isomer specifically identified molecules have been identified in the ISM, and the remaining COMs detected here can be utilized to guide future astronomical observations. Of these isomers, three groups - alcohols, aldehydes, and molecules containing two of these functional groups - displayed varying degrees of unsaturation. Also, the detection of 1-propanol, 2-propanol, 1-butanal, and 2-methyl-propanal has significant implications as the propyl and isopropyl moieties (C3H7), which have already been detected in the ISM via propyl cyanide and isopropyl cyanide, could be detected in our laboratory studies. General reaction mechanisms for their formation are also proposed, with distinct follow-up studies being imperative to elucidate the complexity of COMs synthesized in these ices.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. and Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. and Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
11
|
Bodo E, Bovolenta G, Simha C, Spezia R. On the formation of propylene oxide from propylene in space: gas-phase reactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Abplanalp MJ, Góbi S, Kaiser RI. On the formation and the isomer specific detection of methylacetylene (CH 3CCH), propene (CH 3CHCH 2), cyclopropane (c-C 3H 6), vinylacetylene (CH 2CHCCH), and 1,3-butadiene (CH 2CHCHCH 2) from interstellar methane ice analogues. Phys Chem Chem Phys 2019; 21:5378-5393. [PMID: 30221272 DOI: 10.1039/c8cp03921f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C3H4, C3H6, C4H4, and C4H6 were probed. These experiments confirmed the synthesis of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), 1-butyne (HCCC2H5), 2-butyne (CH3CCCH3), 1,2-butadiene (H2CCCH(CH3)), and 1,3-butadiene (CH2CHCHCH2) with yields of 2.17 ± 0.95 × 10-4, 3.7 ± 1.5 × 10-3, 1.23 ± 0.77 × 10-4, 1.28 ± 0.65 × 10-4, 4.01 ± 1.98 × 10-5, 1.97 ± 0.98 × 10-4, 1.90 ± 0.84 × 10-5, and 1.41 ± 0.72 × 10-4 molecules eV-1, respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
13
|
Mondal A, Roy Chowdhury A, Bhuyan S, Mukhopadhyay SK, Banerjee P. A simple urea-based multianalyte and multichannel chemosensor for the selective detection of F−, Hg2+ and Cu2+ in solution and cells and the extraction of Hg2+ and Cu2+ from real water sources: a logic gate mimic ensemble. Dalton Trans 2019; 48:4375-4386. [DOI: 10.1039/c8dt05097j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, a hydrazine-based chromogenic, fluorogenic and electrochemical chemosensor BCC [1,5-bis(4-cyanophenyl) carbonohydrazide] was reported.
Collapse
Affiliation(s)
- Amita Mondal
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Department of Chemistry
| | | | - Samuzal Bhuyan
- Department of Chemistry
- Sikkim University
- Gangtok-737102
- India
| | | | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
14
|
The formation of urea in space. II. MP2 versus PM6 dynamics in determining bimolecular reaction products. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2385-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Abplanalp MJ, Jones BM, Kaiser RI. Untangling the methane chemistry in interstellar and solar system ices toward ionizing radiation: a combined infrared and reflectron time-of-flight analysis. Phys Chem Chem Phys 2018; 20:5435-5468. [PMID: 28972622 DOI: 10.1039/c7cp05882a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pure methane (CH4/CD4) ices were exposed to three ionizing radiation sources at 5.5 K under ultrahigh vacuum conditions to compare the complex hydrocarbon spectrum produced across several interstellar environments. These irradiation sources consisted of energetic electrons to simulate secondary electrons formed in the track of galactic cosmic rays (GCRs), Lyman α (10.2 eV; 121.6 nm) photons simulated the internal VUV field in a dense cloud, and broadband (112.7-169.8 nm; 11.0-7.3 eV) photons which mimic the interstellar ultra-violet field. The in situ chemical evolution of the ices was monitored via Fourier transform infrared spectroscopy (FTIR) and during heating via mass spectrometry utilizing a quadrupole mass spectrometer with an electron impact ionization source (EI-QMS) and a reflectron time-of-flight mass spectrometer with a photoionization source (PI-ReTOF-MS). The FTIR analysis detected six small hydrocarbon products from the three different irradiation sources: propane [C3H8(C3D8)], ethane [C2H6(C2D6)], the ethyl radical [C2H5(C2D5)], ethylene [C2H4(C2D4)], acetylene [C2H2(C2D2)], and the methyl radical [CH3(CD3)]. The sensitive PI-ReTOF-MS analysis identified a complex array of products with different products being detected between experiments with general formulae: CnH2n+2 (n = 4-8), CnH2n (n = 3-9), CnH2n-2 (n = 3-9), CnH2n-4 (n = 4-9), and CnH2n-6 (n = 6-7) from electron irradiation and CnH2n+2 (n = 4-8), CnH2n (n = 3-10), CnH2n-2 (n = 3-11), CnH2n-4 (n = 4-11), CnH2n-6 (n = 5-11), and CnH2n-8 (n = 6-11) from broadband photolysis and Lyman α photolysis. These experiments show that even the simplest hydrocarbon can produce important complex hydrocarbons such as C3H4 and C4H6 isomers. Distinct isomers from these groups have been shown to be important reactants in the synthesis of polycyclic aromatic hydrocarbons like indene (C9H8) and naphthalene (C10H8) under interstellar conditions.
Collapse
Affiliation(s)
- Matthew J Abplanalp
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822, USA.
| | | | | |
Collapse
|
16
|
On the Formation of the C2H6O Isomers Ethanol (C2H5OH) and Dimethyl Ether (CH3OCH3) in Star-forming Regions. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa7062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Tarczay G, Förstel M, Góbi S, Maksyutenko P, Kaiser RI. Synthesis of the Smallest Member of the Silylketene Family: H 3 SiC(H)=C=O. Chemphyschem 2017; 18:882-889. [PMID: 28129476 DOI: 10.1002/cphc.201601422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/08/2022]
Abstract
Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) combined with electronic structure calculations, it is shown that the hitherto elusive silylketene molecule (H3 SiC(H)=C=O)-the isovalent counterpart of the well-known methylketene molecule-is forming via interaction of energetic electrons with low-temperature silane-carbon monoxide ices. In combination with the infrared spectroscopically detected triplet dicarbon monoxide reactant, electronic structure calculations suggest that dicarbon monoxide reacts with silane via a de facto insertion of the terminal carbon atom into a silicon-hydrogen single bond. This is followed by non-adiabatic reaction dynamics triggered by the heavy silicon atom intersystem crossing from the triplet to the singlet manifold, eventually leading to the formation of silylketene. The non-equilibrium nature of the elementary reactions within the exposed ices results in an exciting and novel chemistry which cannot be explored via traditional preparative chemistry. Since the replacement of hydrogen in silane can introduce side groups such as silyl or alkyl, the reaction of triplet dicarbon monoxide with silane represents the parent system for a previously disregarded reaction class revealing an elegant path to access the largely reactive group of silylketenes.
Collapse
Affiliation(s)
- György Tarczay
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.,Permanent Address: Laboratory of Molecular Spectroscopy, Institute of Chemistry, Eötvös University, PO Box 32, H-1518, Budapest 112, Hungary
| | - Marko Förstel
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA.,Present address: Berlin Institute of Technology, IOAP, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - Sándor Góbi
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Pavlo Maksyutenko
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| | - Ralf I Kaiser
- Department of Chemistry and W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822, USA
| |
Collapse
|
18
|
Prebiotic Lipidic Amphiphiles and Condensing Agents on the Early Earth. Life (Basel) 2016; 6:life6020017. [PMID: 27043635 PMCID: PMC4931454 DOI: 10.3390/life6020017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
It is still uncertain how the first minimal cellular systems evolved to the complexity required for life to begin, but it is obvious that the role of amphiphilic compounds in the origin of life is one of huge relevance. Over the last four decades a number of studies have demonstrated how amphiphilic molecules can be synthesized under plausibly prebiotic conditions. The majority of these experiments also gave evidence for the ability of so formed amphiphiles to assemble in closed membranes of vesicles that, in principle, could have compartmented first biological processes on early Earth, including the emergence of self-replicating systems. For a competitive selection of the best performing molecular replicators to become operative, some kind of bounded units capable of harboring them are indispensable. Without the competition between dynamic populations of different compartments, life itself could not be distinguished from an otherwise disparate array or network of molecular interactions. In this review, we describe experiments that demonstrate how different prebiotically-available building blocks can become precursors of phospholipids that form vesicles. We discuss the experimental conditions that resemble plausibly those of the early Earth (or elsewhere) and consider the analytical methods that were used to characterize synthetic products. Two brief sections focus on phosphorylating agents, catalysts and coupling agents with particular attention given to their geochemical context. In Section 5, we describe how condensing agents such as cyanamide and urea can promote the abiotic synthesis of phospholipids. We conclude the review by reflecting on future studies of phospholipid compartments, particularly, on evolvable chemical systems that include giant vesicles composed of different lipidic amphiphiles.
Collapse
|