1
|
Vikal S, Gautam YK, Kumar A, Kumar A, Singh J, Pratap D, Singh BP, Singh N. Bioinspired palladium-doped manganese oxide nanocorns: a remarkable antimicrobial agent targeting phyto/animal pathogens. Sci Rep 2023; 13:14039. [PMID: 37640751 PMCID: PMC10462759 DOI: 10.1038/s41598-023-40822-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Microbial pathogens are known for causing great environmental stress, owing to which emerging challenges like lack of eco-friendly remediation measures, development of drug-resistant and mutational microbial strains, etc., warrants novel and green routes as a stepping stone to serve such concerns sustainably. In the present study, palladium (Pd) doped manganese (II, III) oxide (Mn3O4) nanoparticles (NPs) were synthesized using an aqueous Syzygium aromaticum bud (ASAB) extract. Preliminary phytochemical analysis of ASAB extract indicates the presence of polyphenolics such as phenols, alkaloids, and flavonoids that can act as potential capping agents in NPs synthesis, which was later confirmed in FTIR analysis of pure and Pd-doped Mn3O4 NPs. XRD, Raman, and XPS analyses confirmed the Pd doping in Mn3O4 NPs. FESEM and HRTEM study reveals the mixed morphologies dominated by nanocorns appearance. Zeta potential investigation reveals high stability of the synthesized NPs in colloidal solutions. The developed Pd-doped Mn3O4 NPs were tested against two fungal phytopathogens, i.e., Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, known for causing great economic losses in yield and quality of different plant species. The antifungal activity of synthesized Pd-doped Mn3O4 NPs displayed a dose-dependent response with a maximum of ~92%, and ~72% inhibition was recorded against S. sclerotiorum and C. gloeosporioides, respectively, at 1000 ppm concentration. However, C. gloeosporioides demonstrated higher sensitivity to Pd-doped Mn3O4 NPs upto 500 ppm) treatment than S. sclerotiorum. The prepared NPs also showed significant antibacterial activity against Enterococcus faecalis. The Pd-doped Mn3O4 NPs were effective even at low treatment doses, i.e., 50-100 ppm, with the highest Zone of inhibition obtained at 1000 ppm concentration. Our findings provide a novel, eco-benign, and cost-effective approach for formulating a nanomaterial composition offering multifaceted utilities as an effective antimicrobial agent.
Collapse
Affiliation(s)
- Sagar Vikal
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Yogendra K Gautam
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| | - Ashwani Kumar
- Nanoscience Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee, 247667, India.
- Department of Physics, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| | - Ajay Kumar
- Department of Biotechnology, Mewar Institute of Management, Ghaziabad, Uttar Pradesh, 201012, India.
| | - Jyoti Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Dharmendra Pratap
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Beer Pal Singh
- Smart Materials and Sensors Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Neetu Singh
- Department of Biotechnology, Mewar Institute of Management, Ghaziabad, Uttar Pradesh, 201012, India
| |
Collapse
|
2
|
Rayssi C, Jebli M, Dhahri J, Henda MB, Alotaibi N, Alshahrani T, Belmabrouk H, Bchetnia A, Bouazizi ML. Experimental-structural study, Raman spectroscopy, UV‐visible, and impedance characterizations of Ba0.97La0.02Ti0.9Nb0.08O3 polycrystalline sample. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Pseudocapacitive performance of Mn3O4–SnO2 hybrid nanoparticles synthesized via ultrasonication approach. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01421-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Barreca D, Gri F, Gasparotto A, Carraro G, Bigiani L, Altantzis T, Žener B, LavrenčičŠtangar U, Alessi B, Padmanaban DB, Mariotti D, Maccato C. Multi-functional MnO 2 nanomaterials for photo-activated applications by a plasma-assisted fabrication route. NANOSCALE 2018; 11:98-108. [PMID: 30303201 DOI: 10.1039/c8nr06468g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(ii) diamine diketonate precursor. Growth experiments yielded β-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.
Collapse
Affiliation(s)
- Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Barreca D, Gri F, Gasparotto A, Altantzis T, Gombac V, Fornasiero P, Maccato C. Insights into the Plasma-Assisted Fabrication and Nanoscopic Investigation of Tailored MnO 2 Nanomaterials. Inorg Chem 2018; 57:14564-14573. [PMID: 30407794 DOI: 10.1021/acs.inorgchem.8b02108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses, from heterogeneous catalysis to gas sensing, owing to its structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasma-assisted process starting from a fluorinated manganese(II) molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and morphology revealed the formation of F-doped, oxygen-deficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature ( TG). Whereas phase-pure β-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vis-light activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.
Collapse
Affiliation(s)
- Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences , Padova University , 35131 Padova , Italy
| | - Filippo Gri
- Department of Chemical Sciences , Padova University and INSTM , 35131 Padova , Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences , Padova University and INSTM , 35131 Padova , Italy
| | | | - Valentina Gombac
- Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR and INSTM , Trieste University , 34127 Trieste , Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, ICCOM-CNR and INSTM , Trieste University , 34127 Trieste , Italy
| | - Chiara Maccato
- Department of Chemical Sciences , Padova University and INSTM , 35131 Padova , Italy
| |
Collapse
|
6
|
Zhang D, Li G, Fan J, Li B, Li L. In Situ Synthesis of Mn 3 O 4 Nanoparticles on Hollow Carbon Nanofiber as High-Performance Lithium-Ion Battery Anode. Chemistry 2018; 24:9632-9638. [PMID: 29697864 DOI: 10.1002/chem.201801196] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 11/10/2022]
Abstract
The practical applications of Mn3 O4 in lithium-ion batteries are greatly hindered by fast capacity decay and poor rate performance as a result of significant volume changes and low electrical conductivity. It is believed that the synthesis of nanoscale Mn3 O4 combined with carbonaceous matrix will lead to a better electrochemical performance. Herein, a convenient route for the synthesis of Mn3 O4 nanoparticles grown in situ on hollow carbon nanofiber (denoted as HCF/Mn3 O4 ) is reported. The small size of Mn3 O4 particles combined with HCF can significantly alleviate volume changes and electrical conductivity; the strong chemical interactions between HCF and Mn3 O4 would improve the reversibility of the conversion reaction for MnO into Mn3 O4 and accelerate charge transfer. These features endow the HCF/Mn3 O4 composite with superior cycling stability and rate performance if used as the anode for lithium-ion batteries. The composite delivers a high discharge capacity of 835 mA h g-1 after 100 cycles at 200 mA g-1 , and 652 mA h g-1 after 240 cycles at 1000 mA g-1 . Even at 2000 mA g-1 , it still shows a high capacity of 528 mA h g-1 . The facile synthetic method and outstanding electrochemical performance of the as-prepared HCF/Mn3 O4 composite make it a promising candidate for a potential anode material for lithium-ion batteries.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jianming Fan
- College of Chemistry and Materials, Longyan University, Longyan, 364012, P.R. China
| | - Baoyun Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
7
|
Li G, Jin R, Zhai Q, Zhang S. Snowflake Like ZnCo2
O4-x
F2x
/Polypyrrole Composites as High Performance Anode for Lithium Ion Batteries. CRYSTAL RESEARCH AND TECHNOLOGY 2017. [DOI: 10.1002/crat.201700111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guihua Li
- School of Chemistry & Materials Science; Ludong University; Yantai 264025 P. R. China
| | - Rencheng Jin
- School of Chemistry & Materials Science; Ludong University; Yantai 264025 P. R. China
| | - Qinghe Zhai
- School of Chemistry & Materials Science; Ludong University; Yantai 264025 P. R. China
| | - Shaohua Zhang
- School of Chemistry & Materials Science; Ludong University; Yantai 264025 P. R. China
| |
Collapse
|
8
|
Sun Y, Jiao R, Zuo X, Tang R, Su H, Xu D, Sun D, Zeng S, Zhang X. Novel Bake-in-Salt Method for the Synthesis of Mesoporous Mn 3O 4@C Networks with Superior Cycling Stability and Rate Performance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35163-35171. [PMID: 27977117 DOI: 10.1021/acsami.6b10121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The commercial applications of Mn3O4 in lithium ion batteries (LIBs) are greatly restricted because of the low electrical conductivity and poor cycling stability at high current density. To overcome these drawbacks, mesoporous Mn3O4@C networks were designed and synthesized via an improved bake-in-salt method using NaCl as the assistant salt, and without the protection of inert gas. The added NaCl plays a versatile role during the synthetic process, including the heat conducting medium, removable hard template and protective layer. Because of the homogeneous distribution of Mn3O4 nanoparticles within the carbon matrix, the as-prepared Mn3O4@C networks show excellent cycling stability in LIBs. After cycling for 950 times at a current density of 1 A g-1, the discharge capacity of the as-prepared Mn3O4@C networks is determined to be 754.4 mA h g-1, showing superior cycling stability as compared to its counterparts. The valuable and promising method, simple synthetic procedure and excellent cycling stability of the as-prepared Mn3O4@C networks makes it a promising candidate as the potential anode material for LIBs.
Collapse
Affiliation(s)
- Yuanwei Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Ranran Jiao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Xintao Zuo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Rongfeng Tang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Huaifen Su
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Dan Xu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Dezhi Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Suyuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| | - Xianxi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252059, China
| |
Collapse
|