1
|
Rodriguez-Navarro C, Elert K, Ibañez-Velasco A, Monasterio-Guillot L, Andres M, Sivera F, Pascual E, Ruiz-Agudo E. Unraveling the pathological biomineralization of monosodium urate crystals in gout patients. Commun Biol 2024; 7:828. [PMID: 38972919 PMCID: PMC11228021 DOI: 10.1038/s42003-024-06534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.
Collapse
Grants
- PID2021.125305NB.I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- B-RNM-574-UGR20 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- RNM-179 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- UCE-PP2016-05 Universidad de Granada (University of Granada)
Collapse
Affiliation(s)
- Carlos Rodriguez-Navarro
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain.
| | - Kerstin Elert
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
- Escuela de Estudios Arabes, Consejo Superior de Investigaciones Científicas (EEA-CSIC), C. Chapiz 22, 18010, Granada, Spain
| | - Aurelia Ibañez-Velasco
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Luis Monasterio-Guillot
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| | - Mariano Andres
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research, Av. Pintor Baeza s/n, 03010, Alicante, Spain
| | - Francisca Sivera
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Elda General University Hospital, Carretera Elda-Sax s/n, 03600, Elda, Spain
| | - Eliseo Pascual
- Department of Clinical Medicine, Miguel Hernandez University, CN 332 s/n, 03550, Alicante, Spain
- Department of Rheumatology, Dr. Balmis General University Hospital, Alicante Institute for Health and Biomedical Research, Av. Pintor Baeza s/n, 03010, Alicante, Spain
| | - Encarnación Ruiz-Agudo
- Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n, 18002, Granada, Spain
| |
Collapse
|
2
|
Yang C, Liu Y, Wong KY, Li H, Magdanz V, Sun C, Liu J. Adsorption of DNA and Aptamers to Sodium Urate Crystals and Inhibition of Crystal Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8730-8737. [PMID: 38616350 DOI: 10.1021/acs.langmuir.4c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
An elevated level of blood uric acid (UA) can cause the formation of kidney stones, gout, and other diseases. We recently isolated a few DNA aptamers that can selectively bind to UA. In this work, we investigated the adsorption of a UA aptamer and random sequence DNA onto sodium urate crystals. Both DNA strands adsorbed similarly to urate crystals. In addition, both the UA aptamer and random DNA can inhibit the growth of urate crystals, suggesting a nonspecific adsorption mechanism rather than specific aptamer binding. In the presence of 500 nM DNA, the growth of needle-like sodium urate crystals was inhibited, and the crystals appeared granular after 6 h. To understand the mechanism of DNA adsorption, a few chemicals were added to desorb DNA. DNA bases contributed more to the adsorption than the phosphate backbone. Surfactants induced significant DNA desorption. Finally, DNA could also be adsorbed onto real UA kidney stones. This study provides essential insights into the interactions between DNA oligonucleotides and urate crystals, including the inhibition of growth and interface effects of DNA on sodium urate crystals.
Collapse
Affiliation(s)
- Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong 999077, China
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Veronika Magdanz
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
3
|
Liu Y, Zhang Q, Du J, Guo R. Arginine-rich peptides as crystallization inhibitors for sodium urate. J Mater Chem B 2023; 11:7389-7400. [PMID: 37431691 DOI: 10.1039/d3tb00666b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Inhibiting the formation of urate crystals is the key to prevent hyperuricemia from developing into gout. Although many studies have focused on the influence of biomacromolecules in the crystallization behavior of sodium urate, the role of peptides with specific structures may contribute to unprecedented regulatory effects. Here, for the first time, we studied the effects of cationic peptides on the phase behavior, crystallization kinetics, and size/morphology of urate crystals. The addition of protamine (PRTM, a typical natural arginine-rich peptide) prolongs the nucleation induction time of sodium urate and inhibits crystal nucleation effectively. PRTM binds to the surface of amorphous sodium urate (ASU) through the hydrogen bond and electrostatic attraction between guanidine groups and urate anions, which is conducive to maintaining the state of ASU and inhibiting crystal nucleation. Moreover, PRTM preferentially binds to the MSUM plane and leads to a significant reduction in the aspect ratio of MSUM filamentous crystals. Further studies showed that there are significant differences in the inhibiting effects of arginine-rich peptides with different chain lengths on the crystallization behavior of sodium urate. Both guanidine functional groups and peptide chain length determine the crystallization inhibiting effect of peptides simultaneously. The present work highlights the potential role of arginine peptides in inhibiting the crystallization of urate and provides new insights into the inhibition mechanism in the pathological biomineralization of sodium urate, demonstrating the possibility of using cationic peptides to treat gout.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - QianYa Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - JiaMei Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
4
|
Meng Y, Qi Z, Li Z, Niu Y, Wu M, Yuan Z, He G, Yu M, Jiang X. Tailored hydrogel composite membrane for the regulated crystallization of monosodium urate monohydrate within coffee's metabolites system. J Colloid Interface Sci 2023; 648:365-375. [PMID: 37301161 DOI: 10.1016/j.jcis.2023.05.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.
Collapse
Affiliation(s)
- Yingshuang Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhibo Qi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhonghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mengyuan Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhijie Yuan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingyang Yu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 1160831, China.
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
5
|
Li M, Tang W, Gong J. Unusual shape-preserved pathway of a core-shell phase transition triggered by orientational disorder. IUCRJ 2023; 10:38-51. [PMID: 36598501 PMCID: PMC9812221 DOI: 10.1107/s2052252522011034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/17/2022] [Indexed: 05/29/2023]
Abstract
The ubiquitous presence of crystal defects provides great potential and opportunities to construct the desired structure (hence with the desired properties) and tailor the synthetic process of crystalline materials. However, little is known about their regulation role in phase transition and crystallization pathways. It was generally thought that a phase transition in solution proceeds predominantly via the solvent-mediated phase-transformation pathway due to energetically high-cost solid-state phase transitions (if any). Herein, we report an unprecedented finding that an orientational disorder defect present in the crystal structure triggers an unusual pathway of a core-shell phase transition with apparent shape-preserved evolution. In the pathway, the solid-state dehydration phase transition occurs inside the crystal prior to its competitive transformation approach mediated by solvent, forming an unconventional core-shell structure. Through a series of combined experimental and computational techniques, we revealed that the presence of crystal defects, introduced by urate tautomerism over the course of crystallization, elevates the metastability of uric acid dihydrate (UAD) crystals and triggers UAD dehydration to the uric acid anhydrate (UAA) phase in the crystal core which precedes with surface dissolution of the shell UAD crystal and recrystallization of the core phase. This unique phase transition could also be related to defect density, which appears to be influenced by the thickness of UAD crystals and crystallization driving force. The discovery of an unusual pathway of the core-shell phase transition suggests that the solid-state phase transition is not necessarily slower than the solvent-mediated phase transformation in solution and provides an alternative approach to constructing the core-shell structure. Moreover, the fundamental role of orientational disorder defects on the phase transition identified in this study demonstrates the feasibility to tailor phase transition and crystallization pathways by strategically importing crystal defects, which has broad applications in crystal engineering.
Collapse
Affiliation(s)
- Mengya Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Weiwei Tang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, People’s Republic of China
- Key Laboratory Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, People’s Republic of China
- Key Laboratory Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
6
|
Chen C, Wang J, Liang Z, Li M, Fu D, Zhang L, Yang X, Guo Y, Ge D, Liu Y, Sun B. Monosodium urate crystals with controlled shape and aspect ratio for elucidating the pathological progress of acute gout. BIOMATERIALS ADVANCES 2022; 139:213005. [PMID: 35882152 DOI: 10.1016/j.bioadv.2022.213005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Gout is a self-limiting inflammatory arthritis mediated by the precipitation of monosodium urate (MSU) crystals that further activate the NLRP3 inflammasome and initiate a cascade of inflammatory events. However, the key physicochemical properties of MSU crystals that determine the acute phase of gout have not been fully identified. In this study, a library of engineered MSU crystals with well-controlled size and shape is designed to explore their proinflammatory potentials in mediating the pathological progress of gout. It is demonstrated that medium-sized long aspect ratio MSU crystals induce more prominent IL-1β production in vitro due to enhanced cellular uptake and the production of mitochondrial reactive oxygen species (mtROS). The characteristics of MSU crystals are also correlated with their inflammatory potentials in both acute peritonitis and arthritis models. Furthermore, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) is demonstrated to inhibit MSU-induced oxidative burst by removing plasma membrane cholesterol. As a result, it attenuates the inflammatory responses both in vitro and in vivo. Additionally, antioxidant N-acetylcysteine (NAC) is shown to alleviate acute gouty symptom by suppressing oxidative stress. This study identifies the key physicochemical properties of MSU crystals that mediate the pathogenesis of gout, which sheds light on novel design strategies for the intervention of gout.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lei Zhang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xuecheng Yang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Yang Liu
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China..
| |
Collapse
|
7
|
Li M, Han D, Gong J. What roles do alkali metal ions play in the pathological crystallization of uric acid? CrystEngComm 2022. [DOI: 10.1039/d2ce00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Na+ and K+ regulate the crystal growth of uric acid dihydrate by kink blocking and rough growth mechanisms.
Collapse
Affiliation(s)
- Mengya Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Centre of Chemistry Science and Engineering, Tianjin 300072, China
| | - Dandan Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Centre of Chemistry Science and Engineering, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Centre of Chemistry Science and Engineering, Tianjin 300072, China
- Key Laboratory Modern Drug Delivery and High Efficiency in Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Liu Y, Qin Y, Zhang Q, Zou W, Jin L, Guo R. Arginine-rich peptide/platinum hybrid colloid nanoparticle cluster: A single nanozyme mimicking multi-enzymatic cascade systems in peroxisome. J Colloid Interface Sci 2021; 600:37-48. [PMID: 34010774 DOI: 10.1016/j.jcis.2021.05.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
Recently, nanozymes have attracted sustained attention for facilitating next generation of artificial enzymatic cascade systems (ECSs). However, the fabrication of integrated multi-ECSs based on a single nanozyme remains a great challenge. Here, inspired by the biological function and self-assembling ability of arginine (R), we synthesized arginine-rich peptide-Pt nanoparticle cluster (ARP-PtNC) nanozymes that mimic two typical enzymatic cascade systems of uricase/catalase and superoxide dismutase/catalase in natural peroxisome. ARPs containing at least 10 arginine residues contribute to the cluster formation based on hydrogen bonding and coordination. The well-designed peptide-Pt hybrid nanozyme not only possesses excellent uricase-mimicking activity to degrade uric acid effectively, but also serves as a desired scavenger for reactive oxygen species (ROS) harnessing two efficient enzyme cascade catalysis of uricase/catalase and superoxide dismutase/catalase. The surface microenvironment of the hybrid nanozymes provided by arginine-rich peptides and the cluster structure contribute to the efficient multiply enzyme-like activities. Fascinatingly, the hybrid nanozyme can inhibit the formation of monosodium urate monohydrate effectively based on the architecture of ARP-PtNCs. Thus, ARP-PtNC nanozyme has the potential in gout and hyperuricemia therapy. Rational design of ingenious peptide-metal hybrid nanozyme with unique physicochemical surface properties provides a versatile and designed strategy to fabricate multi-enzymatic cascade systems, which opens new avenues to broaden the application of nanozymes in practice.
Collapse
Affiliation(s)
- Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| | - Yuling Qin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Qianya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Wenting Zou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Lingcen Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, PR China.
| |
Collapse
|
9
|
Xia Z, Wang L, He G, Jiang X. Morphology Regulation of Monosodium Urate Monohydrate Crystals via Fabricated Uniform Hydrogel Slices. CRYSTAL RESEARCH AND TECHNOLOGY 2020. [DOI: 10.1002/crat.202000039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zeqiu Xia
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Engineering laboratory for Petrochemical Energy-Efficient Separation Technology of Liaoning Province; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Lin Wang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Engineering laboratory for Petrochemical Energy-Efficient Separation Technology of Liaoning Province; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Engineering laboratory for Petrochemical Energy-Efficient Separation Technology of Liaoning Province; Dalian University of Technology; Dalian Liaoning 116024 China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Engineering laboratory for Petrochemical Energy-Efficient Separation Technology of Liaoning Province; Dalian University of Technology; Dalian Liaoning 116024 China
| |
Collapse
|
10
|
Jiang X, Han M, Xia Z, Li J, Ruan X, Yan X, Xiao W, He G. Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform. AIChE J 2020. [DOI: 10.1002/aic.16280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
| | - Mingguang Han
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
| | - Zeqiu Xia
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
| | - Jin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
| | - Xuehua Ruan
- School of Chemical Engineering at PanjinDalian University of Technology Panjin China
| | - Xiaoming Yan
- School of Chemical Engineering at PanjinDalian University of Technology Panjin China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy‐efficient Separation Technology of Liaoning ProvinceDalian University of Technology Dalian China
- School of Chemical Engineering at PanjinDalian University of Technology Panjin China
| |
Collapse
|
11
|
Liu Y, Jing J, Ou C, Zhang X, Jiang S, Chen R, Fu T. Self-suppression from metabolin with a precursor in pathology crystallization of gout. CrystEngComm 2019. [DOI: 10.1039/c9ce00214f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperuricemia is typically defined as occurring above the saturation point of monosodium urate monohydrate (MSUM), which occurs at serum urate levels >6.8 mg dL−1.
Collapse
Affiliation(s)
- Yonghai Liu
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Jie Jing
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Chunyan Ou
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Xingde Zhang
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Shengyu Jiang
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Rong Chen
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| | - Tingming Fu
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210046
- China
| |
Collapse
|