1
|
Zhao C, Lin H, Shan A, Guo S, Li X, Zhang X. Theoretical study on the noncovalent interactions involving triplet diphenylcarbene. J Mol Model 2021; 27:224. [PMID: 34244865 DOI: 10.1007/s00894-021-04838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
The properties of some types of noncovalent interactions formed by triplet diphenylcarbene (DPC3) have been investigated by means of density functional theory (DFT) calculations and quantum theory of atoms in molecule (QTAIM) studies. The DPC3···LA (LA = AlF3, SiF4, PF5, SF2, ClF) complexes have been analyzed from their equilibrium geometries, binding energies, and properties of electron density. The triel bond in the DPC3···AlF3 complex exhibits a partially covalent nature, with the binding energy - 65.7 kJ/mol. The tetrel bond, pnicogen bond, chalcogen bond, and halogen bond in the DPC3···LA (LA = SiF4, PF5, SF2, ClF) complexes show the character of a weak closed-shell noncovalent interaction. Polarization plays an important role in the formation of the studied complexes. The strength of intermolecular interaction decreases in the order LA = AlF3 > ClF > SF2 > SiF4 > PF5. The electron spin density transfers from the radical DPC3 to ClF and SF2 in the formation of halogen bond and chalcogen bond, but for the DPC3···AlF3/SiF4/PF5 complexes, the transfer of electron spin density is minimal.
Collapse
Affiliation(s)
- Chunhong Zhao
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Hui Lin
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Aiting Shan
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Shaofu Guo
- Huihua College of Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
2
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Chi Z, Yan T, Li Q, Scheiner S. Violation of Electrostatic Rules: Shifting the Balance between Pnicogen Bonds and Lone Pair−π Interactions Tuned by Substituents. J Phys Chem A 2019; 123:7288-7295. [DOI: 10.1021/acs.jpca.9b06864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Zongqing Chi
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Tong Yan
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
4
|
Long L, Tao P, Li T, Wu S, Kong X, Liao L, Xiao X, Nie C. Insight into Coordination of Uranyl Ions with N,N′‐bis(2‐five‐membered heterocyclidene)‐1,8‐anthradiamines. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li‐yu Long
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Peng Tao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Tian‐liang Li
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Si Wu
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Xiang‐he Kong
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
| | - Li‐fu Liao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Xi‐lin Xiao
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| | - Chang‐ming Nie
- School of Chemistry and Chemical EngineeringUniversity of South China Hengyang China 421001
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China 421001
| |
Collapse
|
5
|
Enhanced dispersion of carbon nanotubes in water by plasma induced graft poly(N,N-dimethylacrylamide) and its application in humic acid capture. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Lin H, Meng L, Li X, Zeng Y, Zhang X. Comparison of pnicogen and tetrel bonds in complexes containing CX2 carbenes (X = F, Cl, Br, OH, OMe, NH2, and NMe2). NEW J CHEM 2019. [DOI: 10.1039/c9nj03397a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The similarities and differences of pnicogen and tetrel bonds formed by carbenes CX2 with H3AsO and H3SiCN were investigated by carrying out ab initio calculations in association with topological analysis of electron density.
Collapse
Affiliation(s)
- Hui Lin
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xiaoyan Li
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Yanli Zeng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xueying Zhang
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| |
Collapse
|
7
|
Del Bene JE, Alkorta I, Elguero J. Carbenes as Electron-Pair Donors for P⋅⋅⋅C Pnicogen Bonds. Chemphyschem 2017; 18:1597-1610. [DOI: 10.1002/cphc.201700187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Janet E. Del Bene
- Department of Chemistry; Youngstown State University; Youngstown Ohio 44555 USA
| | - Ibon Alkorta
- Instituto de Química Médica ( IQM-CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| | - José Elguero
- Instituto de Química Médica ( IQM-CSIC); Juan de la Cierva, 3 E-28006 Madrid Spain
| |
Collapse
|
8
|
Esrafili MD, Sadr-Mousavi A. Modulating of the pnicogen-bonding by a H⋯π interaction: An ab initio study. J Mol Graph Model 2017; 75:165-173. [PMID: 28595167 DOI: 10.1016/j.jmgm.2017.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/29/2022]
Abstract
An ab initio study of the cooperativity in XH2P⋯NCH⋯Z and XH2P⋯CNH⋯Z complexes (X=F, Cl, Br, CN, NC; Z=C2H2,C6H6) connected by pnicogen-bonding and H⋯π interactions is carried out by means of MP2 computational method. A detailed analysis of the structures, interaction energies and bonding properties is performed on these systems. For each set of the complexes considered, a favorable cooperativity is observed, especially in X=F and CN complexes. However, for a given X or Z, the amount of cooperativity effects in XH2P⋯CNH⋯Z complexes are more important than XH2P⋯NCH⋯Z counterparts. Besides, the influence of a H⋯π interaction on a P⋯N (C) bond is more pronounced than that of a P⋯N (C) bond on a H⋯π bond. The quantum theory of atoms in molecules shows that ternary complexes have increased electron densities at their bond critical points relative to the corresponding binary systems. The results also indicate that the strength of the P⋯N(C) and H⋯π interactions increases in the presence of the solvent.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, P.O. Box: 5513864596, Maragheh, Iran.
| | - Asma Sadr-Mousavi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Khalili B, Rimaz M. Interplay between non-covalent pnicogen bonds and halogen bonds interactions in ArH2N---PH2FO---BrF nanostructured complexes: a substituent effects investigation. Struct Chem 2017. [DOI: 10.1007/s11224-017-0911-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
|
11
|
Esrafili MD, Asadollahi S. Cationic P⋯N interaction in XH 3 P + ⋯NCY complexes (X = H, F, CN, NH 2 , OH; Y = H, Li, F, Cl) and its cooperativity with hydrogen/lithium/halogen bond. J Mol Graph Model 2016; 64:131-138. [DOI: 10.1016/j.jmgm.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022]
|
12
|
Wei Q, Li Q, Cheng J, Li W, Li HB. Comparison of tetrel bonds and halogen bonds in complexes of DMSO with ZF3X (Z = C and Si; X = halogen). RSC Adv 2016. [DOI: 10.1039/c6ra18316f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A theoretical study of the complexes formed by dimethylsulfoxide (DMSO) with ZF3X (Z = C and Si; X = halogen) has been performed at the MP2/aug-cc-pVTZ level.
Collapse
Affiliation(s)
- Quanchao Wei
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Jianbo Cheng
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Wenzuo Li
- The Laboratory of Theoretical and Computational Chemistry
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Hai-Bei Li
- School of Ocean
- Shandong University
- Weihai 264209
- People's Republic of China
| |
Collapse
|
13
|
Nziko VDPN, Scheiner S. Comparison of π-hole tetrel bonding with σ-hole halogen bonds in complexes of XCN (X = F, Cl, Br, I) and NH3. Phys Chem Chem Phys 2016; 18:3581-90. [DOI: 10.1039/c5cp07545a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to the standard halogen bond formed when NH3approaches XCN (X = F, Cl, Br, I) along its molecular axis, a perpendicular approach is also possible, toward a π-hole that is present above the X–C bond.
Collapse
Affiliation(s)
| | - Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University
- Logan
- USA
| |
Collapse
|
14
|
Liu MX, Zhuo HY, Li QZ, Li WZ, Cheng JB. Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes. J Mol Model 2015; 22:10. [PMID: 26669879 DOI: 10.1007/s00894-015-2882-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/29/2015] [Indexed: 11/29/2022]
Abstract
The interplay between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes was studied theoretically. Both bonds exhibited cooperative effects, with shorter binding distances, larger interaction energies, and greater electron densities found for the ternary complexes than for the corresponding binary ones. The cooperative effects between the triel bond and the pnicogen bond were probed by analyzing molecular electrostatic potentials, charge transfer, and orbital interactions. The results showed that the enhancement of the triel bond can mainly be attributed to the electrostatic interaction, while the strengthening of the pnicogen bond can be ascribed chiefly to the electrostatic and orbital interactions. In addition, the origins of both the triel bond and the pnicogen bond were deduced via energy decomposition.
Collapse
Affiliation(s)
- Ming-Xiu Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Hong-Ying Zhuo
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wen-Zuo Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Jian-Bo Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
15
|
Cooperative effects between halogen bonds and pnicogen bonds in XBr∙∙∙OFH2P∙∙∙NH3 (X = F, Cl, CN, NC, OH, and NO2) complexes. J Mol Model 2015; 22:5. [DOI: 10.1007/s00894-015-2872-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/22/2015] [Indexed: 12/16/2022]
|
16
|
LIU YANZHI, YUAN KUN, YUAN ZHAO, ZHU YUANCHENG, ZHAO XIANG. Theoretical exploration of pnicogen bond noncovalent interactions in HCHO⋯PH2X (X=CH3, H, C6H5, F, Cl, Br, and NO2) complexes. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Nziko VDPN, Scheiner S. S···π Chalcogen Bonds between SF2 or SF4 and C–C Multiple Bonds. J Phys Chem A 2015; 119:5889-97. [DOI: 10.1021/acs.jpca.5b03359] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Vincent de Paul N. Nziko
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department of Chemistry and
Biochemistry Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|