1
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
2
|
Rozsa V, Galli G. Solvation of simple ions in water at extreme conditions. J Chem Phys 2021; 154:144501. [PMID: 33858154 DOI: 10.1063/5.0046193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The interaction of ions and water at high pressure and temperature plays a critical role in Earth and planetary science yet remains poorly understood. Aqueous fluids affect geochemical properties ranging from water phase stability to mineral solubility and reactivity. Here, we report first-principles molecular dynamics simulations of mono-valent ions (Li+, K+, Cl-) as well as NaCl in liquid water at temperatures and pressures relevant to the Earth's upper mantle (11 GPa, 1000 K) and concentrations in the dilute limit (0.44-0.88 m), in the regime of ocean salinity. We find that, at extreme conditions, the average structural and vibrational properties of water are weakly affected by the presence of ions, beyond the first solvation shell, similar to what was observed at ambient conditions. We also find that the ionic conductivity of the liquid increases in the presence of ions by less than an order of magnitude and that the dielectric constant is moderately reduced by at most ∼10% at these conditions. Our findings may aid in the parameterization of deep earth water models developed to describe water-rock reactions.
Collapse
Affiliation(s)
- Viktor Rozsa
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Zhang C, Giberti F, Sevgen E, de Pablo JJ, Gygi F, Galli G. Dissociation of salts in water under pressure. Nat Commun 2020; 11:3037. [PMID: 32546791 PMCID: PMC7298052 DOI: 10.1038/s41467-020-16704-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
The investigation of salts in water at extreme conditions is crucial to understanding the properties of aqueous fluids in the Earth. We report first principles (FP) and classical molecular dynamics simulations of NaCl in the dilute limit, at temperatures and pressures relevant to the Earth’s upper mantle. Similar to ambient conditions, we observe two metastable states of the salt: the contact (CIP) and the solvent-shared ion-pair (SIP), which are entropically and enthalpically favored, respectively. We find that the free energy barrier between the CIP and SIP minima increases at extreme conditions, and that the stability of the CIP is enhanced in FP simulations, consistent with the decrease of the dielectric constant of water. The minimum free energy path between the CIP and SIP becomes smoother at high pressure, and the relative stability of the two configurations is affected by water self-dissociation, which can only be described properly by FP simulations. Salts in water at extreme conditions play a fundamental role in determining the properties of the Earthʼs mantle constituents. Here the authors shed light on ion-water and ion-ion interactions for NaCl dissolved in water at conditions relevant to the Earthʼs upper mantle by molecular dynamics simulations.
Collapse
Affiliation(s)
- Cunzhi Zhang
- Department of Materials Science and Engineering, COE, Peking University, 100871, Beijing, China
| | - Federico Giberti
- University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA
| | - Emre Sevgen
- University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA
| | - Juan J de Pablo
- University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA.,Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Francois Gygi
- University of California Davis, Davis, CA, 95616, USA
| | - Giulia Galli
- University of Chicago, 5640 S. Ellis Ave., Chicago, IL, 60637, USA. .,Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.
| |
Collapse
|
4
|
Bove LE, Pietrucci F, Saitta AM, Klotz S, Teixeira J. On the link between polyamorphism and liquid-liquid transition: The case of salty water. J Chem Phys 2019; 151:044503. [DOI: 10.1063/1.5100959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Livia E. Bove
- Dipartimento di Fisica, Università di Roma ‘La Sapienza’, 00185 Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - A. Marco Saitta
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Stefan Klotz
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - José Teixeira
- Laboratoire Léon Brillouin (CEA/CNRS), CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
5
|
Imrichová K, Veselý L, Gasser TM, Loerting T, Neděla V, Heger D. Vitrification and increase of basicity in between ice Ihcrystals in rapidly frozen dilute NaCl aqueous solutions. J Chem Phys 2019; 151:014503. [DOI: 10.1063/1.5100852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kamila Imrichová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, 61264 Brno, Czech Republic
| | - Lukáš Veselý
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tobias M. Gasser
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Vilém Neděla
- Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, 61264 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
6
|
Bove LE, Ranieri U. Salt- and gas-filled ices under planetary conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180262. [PMID: 30982457 PMCID: PMC6501915 DOI: 10.1098/rsta.2018.0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In recent years, evidence has emerged that solid water can contain substantial amounts of guest species, such as small gas molecules-in gas hydrate structures-or ions-in salty ice structures-and that these 'filled' ice structures can be stable under pressures of tens of Gigapascals and temperatures of hundreds of Kelvins. The inclusion of guest species can strongly modify the density, vibrational, diffusive and conductivity properties of ice under high pressure, and promote novel exotic properties. In this review, we discuss our experimental findings and molecular dynamics simulation results on the structures formed by salt- and gas-filled ices, their unusual properties, and the unexpected dynamical phenomena observed under pressure and temperature conditions relevant for planetary interiors modelling. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.
Collapse
Affiliation(s)
- Livia E. Bove
- Dipartimento di Fisica, Universitá di Roma ‘La Sapienza’, 00185Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
- EPSL, IPHYS, École polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
| | - Umbertoluca Ranieri
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
- EPSL, IPHYS, École polytechnique fédérale de Lausanne, Station 3, CH-1015 Lausanne, Switzerland
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| |
Collapse
|
7
|
Stefanutti E, Bove LE, Lelong G, Ricci MA, Soper AK, Bruni F. Ice crystallization observed in highly supercooled confined water. Phys Chem Chem Phys 2019; 21:4931-4938. [DOI: 10.1039/c8cp07585a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the state of water confined in the cylindrical pores of MCM-41 type mesoporous silica, with pore diameters of 2.8 nm and 4.5 nm, over the temperature range 160–290 K by combining small angle neutron scattering and wide angle diffraction.
Collapse
Affiliation(s)
- E. Stefanutti
- Dipartimento di Scienze, Università degli Studi Roma Tre
- 00146 Roma
- Italy
| | - L. E. Bove
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC
- 75005 Paris
- France
| | - G. Lelong
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC
- 75005 Paris
- France
| | - M. A. Ricci
- Dipartimento di Scienze, Università degli Studi Roma Tre
- 00146 Roma
- Italy
| | - A. K. Soper
- ISIS Department, UKRI-STFC Rutherford Appleton Laboratory, Harwell Campus
- Didcot
- UK
| | - F. Bruni
- Dipartimento di Scienze, Università degli Studi Roma Tre
- 00146 Roma
- Italy
| |
Collapse
|
8
|
Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A. In situ high-pressure measurement of crystal solubility by using neutron diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:053906. [PMID: 29864828 DOI: 10.1063/1.5021317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.
Collapse
Affiliation(s)
- Ji Chen
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Qiwei Hu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Leiming Fang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Duanwei He
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiping Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Xie
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bo Chen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xin Li
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiaolin Ni
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Cong Fan
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Akun Liang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Handle PH, Loerting T. Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures. J Chem Phys 2018; 148:124509. [DOI: 10.1063/1.5019414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Philip H. Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land. Proc Natl Acad Sci U S A 2017; 114:13336-13344. [PMID: 29133419 DOI: 10.1073/pnas.1700103114] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.
Collapse
|
11
|
Migliorati V, Filipponi A, Di Cicco A, De Panfilis S, D’Angelo P. Structure of Water in Zn2+ Aqueous Solutions from Ambient Conditions up to the Gigapascal Pressure Range: A XANES and Molecular Dynamics Study. Inorg Chem 2017; 56:14013-14022. [DOI: 10.1021/acs.inorgchem.7b02151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Valentina Migliorati
- Dipartimento di
Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| | - Adriano Filipponi
- Dipartimento di Scienze
Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Andrea Di Cicco
- Sezione di Fisica,
Scuola di Scienze e Tecnologie, Università di Camerino, 62032 Camerino (MC), Italy
| | - Simone De Panfilis
- Centre
for Life Nano Science - IIT@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena 291, 00161 Rome, Italy
| | - Paola D’Angelo
- Dipartimento di
Chimica, Università di Roma “La Sapienza”, P.le
A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
12
|
Ludl AA, Bove LE, Corradini D, Saitta AM, Salanne M, Bull CL, Klotz S. Probing ice VII crystallization from amorphous NaCl–D2O solutions at gigapascal pressures. Phys Chem Chem Phys 2017; 19:1875-1883. [DOI: 10.1039/c6cp07340a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The high density amorphous solution NaCl·10.2D2O crystallises at 260 K as almost pure ice VII during annealing at gigapascal pressures.
Collapse
Affiliation(s)
- A.-A. Ludl
- Sorbonne Universités, UPMC Univ. Paris 06
- Paris
- France
- Departament d'FMC
- Universitat de Barcelona
| | - L. E. Bove
- Sorbonne Universités, UPMC Univ. Paris 06
- Paris
- France
- EPSL
- Institute of Condensed Matter Physics
| | - D. Corradini
- Sorbonne Universités
- UPMC Univ. Paris 06
- CNRS UMR 8234
- Paris
- France
| | - A. M. Saitta
- Sorbonne Universités, UPMC Univ. Paris 06
- Paris
- France
| | - M. Salanne
- Sorbonne Universités
- UPMC Univ. Paris 06
- CNRS UMR 8234
- Paris
- France
| | - C. L. Bull
- ISIS Facility
- STFC Rutherford Appleton Laboratory
- Harwell Science & Innovation Campus, Harwell Oxford
- Oxon, OX11 0QX
- UK
| | - S. Klotz
- Sorbonne Universités, UPMC Univ. Paris 06
- Paris
- France
| |
Collapse
|
13
|
Abstract
The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where nonmolecular ice is thought to be the most abundant phase of water. In this work, we investigate, by Raman spectroscopy up to megabar pressures and ab initio simulations, how the transformation of ice VII in ice X is affected by the presence of salt inclusions in the ice lattice. Considerable amounts of salt can be included in ice VII structure under pressure via rock-ice interaction at depth and processes occurring during planetary accretion. Our study reveals that the presence of salt hinders proton order and hydrogen bond symmetrization, and pushes ice VII to ice X transformation to higher and higher pressures as the concentration of salt is increased.
Collapse
|