1
|
Chatgilialoglu C, Peluso A. Hole Transfer and the Resulting DNA Damage. Biomolecules 2024; 15:29. [PMID: 39858423 PMCID: PMC11764341 DOI: 10.3390/biom15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
In this review, we focus on the one-electron oxidation of DNA, which is a multipart event controlled by several competing factors. We will discuss the oxidation free energies of the four nucleobases and the electron detachment from DNA, influenced by specific interactions like hydrogen bonding and stacking interactions with neighboring sites in the double strand. The formation of a radical cation (hole) which can migrate through DNA (hole transport), depending on the sequence-specific effects and the allocation of the final oxidative damage, is also addressed. Particular attention is given to the one-electron oxidation of ds-ODN containing G:C pairs, including the complex mechanism of the deprotonation vs. hydration steps of a G:C•+ pair, as well as to the modes of formation of the two guanyl radical tautomers after deprotonation. Among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms, several oxidants react with DNA. The mechanism of stable product formation and their use as biomarkers of guanine oxidation in DNA damage are also addressed.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Center for Advanced Technologies, Adam Mickiewicz University, 61614 Poznań, Poland
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Landi A, Ricci G, Olivier Y, Capobianco A, Peluso A. Toward Efficient Modeling of Nonradiative Decay in Extended INVEST: Overcoming Computational Challenges in Quantum Dynamics Simulations. J Phys Chem Lett 2024; 15:11042-11050. [PMID: 39470168 DOI: 10.1021/acs.jpclett.4c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In recent years, an increasing number of fully organic molecules capable of thermally activated delayed fluorescence (TADF) have been reported, often with very small or even inverted singlet-triplet (INVEST) energy gaps. These molecules typically exhibit complex photophysics due to the close energy levels of multiple singlet and triplet states, which create various transition pathways toward emission. A predictive model for the rates of these transitions is thus essential for assessing the suitability of new materials for light-emitting devices. Quantum Dynamics (QD) calculations are ideal for this purpose, as they include quantum effects, without the limitations of first-order perturbative approaches, also allowing taking into account more than two electronic states at once. However, the huge computational demands of QD methodologies, especially for large molecules, currently limit their use as a standard tool. To address this problem, we here employ a strategy that allows us to include almost the whole set of the vibrational coordinates by selecting the key elements of the Hilbert space that significantly impact dynamics, thereby hugely reducing the computational burden. Application of this protocol to two relatively large INVEST molecules reveals that internal conversion in these systems is very fast, making indirect emissive pathways a possible channel for the population of the S1 state. More importantly, this study demonstrates that the dynamics can be accurately described even with a significantly reduced vibrational space, thus allowing quantum dynamics calculations that yield accurate transition rates in a few minutes of computational time.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Gaetano Ricci
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Universitè de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Universitè de Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| |
Collapse
|
3
|
Fisher JM, Williams ML, Palmer JR, Powers-Riggs NE, Young RM, Wasielewski MR. Long-Lived Charge Separation in Single Crystals of an Electron Donor Covalently Linked to Four Acceptor Molecules. J Am Chem Soc 2024; 146:9911-9919. [PMID: 38530990 DOI: 10.1021/jacs.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Crystalline donor-acceptor (D-A) systems serve as an excellent platform for studying CT exciton creation, migration, and dissociation into free charge carriers for solar energy conversion. Donor-acceptor cocrystals have been utilized to develop an understanding of CT exciton formation in ordered organic solids; however, the strong electronic coupling of the D and A units can sometimes limit charge separation lifetimes due to their close proximity. Covalent D-A systems that preorganize specific donor-acceptor structures can assist in engineering crystal morphologies that promote long-lived charge separation to overcome this limitation. Here we investigate photogenerated CT exciton formation in a single crystal of a 2,5,8,11-tetraphenylperylene (PerPh4) donor to which four identical naphthalene-(1,4:5,8)-bis(dicarboximide) (NDI) electron acceptors are covalently attached at the para positions of the PerPh4 phenyl groups to yield PerPh4-NDI4. X-ray crystallography shows that the four NDIs pack pairwise into two distinct motifs. Two NDI acceptors of one PerPh4-NDI4 are positioned over the PerPh4 donors of adjacent PerPh4-NDI4 molecules with the donor and acceptor π-systems having a large dihedral angle between them, while the other two NDIs of PerPh4-NDI4 form xylene-NDI van der Waals π-stacks with the corresponding NDIs in adjacent PerPh4-NDI4 molecules. Upon selective photoexcitation of PerPh4 in the single crystal, CT exciton formation occurs in <300 fs yielding electron-hole pairs that live for more than ∼16 μs. This demonstrates the effectiveness of covalently linked D-A systems for engineering single crystal structures that promote efficient and long-lived charge separation for solar energy conversion.
Collapse
Affiliation(s)
- Jeremy M Fisher
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Malik L Williams
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Jonathan R Palmer
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Natalia E Powers-Riggs
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston Illinois 60208-3113, United States
| |
Collapse
|
4
|
Capobianco A, Landi A, Peluso A. Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations. Int J Mol Sci 2022; 23:ijms232214452. [PMID: 36430930 PMCID: PMC9697240 DOI: 10.3390/ijms232214452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Collapse
|
5
|
Landi A, Capobianco A, Peluso A. The Time Scale of Electronic Resonance in Oxidized DNA as Modulated by Solvent Response: An MD/QM-MM Study. Molecules 2021; 26:5497. [PMID: 34576968 PMCID: PMC8465834 DOI: 10.3390/molecules26185497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
The time needed to establish electronic resonant conditions for charge transfer in oxidized DNA has been evaluated by molecular dynamics simulations followed by QM/MM computations which include counterions and a realistic solvation shell. The solvent response is predicted to take ca. 800-1000 ps to bring two guanine sites into resonance, a range of values in reasonable agreement with the estimate previously obtained by a kinetic model able to correctly reproduce the observed yield ratios of oxidative damage for several sequences of oxidized DNA.
Collapse
Affiliation(s)
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, 132, I-84084 Fisciano, SA, Italy; (A.L.); (A.P.)
| | | |
Collapse
|
6
|
Borrelli R, Gelin MF. Finite temperature quantum dynamics of complex systems: Integrating
thermo‐field
theories and
tensor‐train
methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Maxim F. Gelin
- School of Sciences Hangzhou Dianzi University Hangzhou China
| |
Collapse
|
7
|
Velardo A, Landi A, Borrelli R, Peluso A. Reliable Predictions of Benzophenone Singlet-Triplet Transition Rates: A Second-Order Cumulant Approach. J Phys Chem A 2021; 125:43-49. [PMID: 33369419 DOI: 10.1021/acs.jpca.0c07848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fermi golden rule and second-order cumulant expansion of the time-dependent density matrix have been used to compute from first principles the rate of intersystem crossing in benzophenone, using minimum-energy geometries and normal modes of vibrations computed at the TDDFT/CAM-B3LYP level. Both approaches yield reliable values of the S1 decay rate, the latter being almost in quantitative agreement with the results of time-dependent spectroscopic measurements (0.154 ps-1 observed vs 0.25 ps-1 predicted). The Fermi golden rule slightly overestimates the decay rate of S1 state (kd = 0.45 ps-1) but provides better insights into the chemico-physical parameters, which govern the transition from a thermally equilibrated population of S1, showing that the indirect mechanism is much faster than the direct one because of the vanishingly small Franck-Condon weighted density of states at ΔE of transition.
Collapse
Affiliation(s)
- Amalia Velardo
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125 Torino, Italy.,Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, University of Torino, I-10195 Grugliasco, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia Adolfo Zambelli, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
| |
Collapse
|
8
|
Landi A, Capobianco A, Peluso A. Coherent Effects in Charge Transport in Molecular Wires: Toward a Unifying Picture of Long-Range Hole Transfer in DNA. J Phys Chem Lett 2020; 11:7769-7775. [PMID: 32830977 PMCID: PMC8154848 DOI: 10.1021/acs.jpclett.0c01996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the framework of a multistep mechanism in which environmental motion triggers comparatively faster elementary electron-transfer steps and stabilizes hole-transfer products, microscopic coherence is crucial for rationalizing the observed yield ratios of oxidative damage to DNA. Interference among probability amplitudes of indistinguishable electron-transfer paths is able to drastically change the final outcome of charge transport, even in DNA oligomers constituted by similar building blocks, and allows for reconciling apparently discordant experimental observations. Properly tailored DNA oligomers appear to be a promising workbench for studying tunneling in the presence of dissipation at the macroscopic level.
Collapse
|
9
|
The Dynamics of Hole Transfer in DNA. Molecules 2019; 24:molecules24224044. [PMID: 31703470 PMCID: PMC6891780 DOI: 10.3390/molecules24224044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
Abstract
High-energy radiation and oxidizing agents can ionize DNA. One electron oxidation gives rise to a radical cation whose charge (hole) can migrate through DNA covering several hundreds of Å, eventually leading to irreversible oxidative damage and consequent disease. Understanding the thermodynamic, kinetic and chemical aspects of the hole transport in DNA is important not only for its biological consequences, but also for assessing the properties of DNA in redox sensing or labeling. Furthermore, due to hole migration, DNA could potentially play an important role in nanoelectronics, by acting as both a template and active component. Herein, we review our work on the dynamics of hole transfer in DNA carried out in the last decade. After retrieving the thermodynamic parameters needed to address the dynamics of hole transfer by voltammetric and spectroscopic experiments and quantum chemical computations, we develop a theoretical methodology which allows for a faithful interpretation of the kinetics of the hole transport in DNA and is also capable of taking into account sequence-specific effects.
Collapse
|
10
|
Borrelli R. Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion. J Chem Phys 2019; 150:234102. [PMID: 31228887 DOI: 10.1063/1.5099416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The twin-formulation of quantum statistical mechanics is employed to describe a new methodology for the solution of the equations of motion of the reduced density matrix in their hierarchical formulation. It is shown that the introduction of tilde operators and of their algebra in the dual space greatly simplifies the application of numerical techniques for the propagation of the density matrix. The application of tensor-train representation of a vector to solve complex quantum dynamical problems within the framework of the twin-formulation is discussed. Next, applications of the hierarchical equations of motion to a dissipative polaron model are presented showing the validity and accuracy of the new approach.
Collapse
|
11
|
Landi A, Borrelli R, Capobianco A, Peluso A. Transient and Enduring Electronic Resonances Drive Coherent Long Distance Charge Transport in Molecular Wires. J Phys Chem Lett 2019; 10:1845-1851. [PMID: 30939015 DOI: 10.1021/acs.jpclett.9b00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is shown that the yields of oxidative damage observed in double-stranded DNA oligomers consisting of two guanines separated by adenine-thymine (A:T) n bridges of various lengths are reliably accounted for by a multistep mechanism, in which transient and nontransient electronic resonances induce charge transport and solvent relaxation stabilizes the hole transfer products. The proposed multistep mechanism leads to results in excellent agreement with the observed yield ratios for both the short and the long distance regime; the almost distance independence of yield ratios for longer bridges ( n ≥ 3) is the consequence of the significant energy decrease of the electronic levels of the bridge, which, as the bridge length increases, become quasi-degenerate with those of the acceptor and donor groups (enduring resonance). These results provide significant guidelines for the design of novel DNA sequences to be employed in organic electronics.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science , University of Torino , Via Leonardo da Vinci 44 , I-10095 Grugliasco , Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| |
Collapse
|
12
|
Capobianco A, Velardo A, Peluso A. Single-Stranded DNA Oligonucleotides Retain Rise Coordinates Characteristic of Double Helices. J Phys Chem B 2018; 122:7978-7989. [PMID: 30070843 DOI: 10.1021/acs.jpcb.8b04542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures of single-stranded DNA oligonucleotides from dimeric to hexameric sequences have been thoroughly investigated. Computations performed at the density functional level of theory including dispersion forces and solvation show that single-stranded helices adopt conformations very close to crystallographic B-DNA, with rise coordinates amounting up to 3.3 Å. Previous results, suggesting that single strands should be shorter than double helices, largely originated from the incompleteness of the adopted basis set. Although sensible deviations with respect to standard B-DNA are predicted, computations indicate that sequences rich in stacked adenines are the most ordered ones, favoring the B-DNA pattern and inducing regular arrangements also on flanking nucleobases. Several structural properties of double helices rich in adenine are indeed already reflected by the corresponding single strands.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| |
Collapse
|
13
|
Capobianco A, Landi A, Peluso A. Modeling DNA oxidation in water. Phys Chem Chem Phys 2018; 19:13571-13578. [PMID: 28513687 DOI: 10.1039/c7cp02029e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel set of hole-site energies and electronic coupling parameters to be used, in the framework of the simplest tight-binding approximation, for predicting DNA hole trapping efficiencies and rates of hole transport in oxidized DNA is proposed. The novel parameters, significantly different from those previously reported in the literature, have been inferred from reliable density functional calculations, including both the sugar-phosphate ionic backbone and the effects of the aqueous environment. It is shown that most of the experimental oxidation free energies of DNA tracts and of oligonucleotides available from photoelectron spectroscopy and voltammetric measurements are reproduced with great accuracy, without the need for introducing sequence dependent parameters.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università di Salerno, I-84084 Fisciano (SA), Italy.
| | | | | |
Collapse
|
14
|
Landi A, Borrelli R, Capobianco A, Velardo A, Peluso A. Hole Hopping Rates in Organic Semiconductors: A Second-Order Cumulant Approach. J Chem Theory Comput 2018. [PMID: 29345937 DOI: 10.1021/acs.jpcc.8b08126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Second-order cumulant expansion of the time dependent reduced density matrix has been employed to evaluate hole hopping rates in pentacene, tetracene, picene, and rubrene homodimers. The cumulant expansion is a full quantum mechanical approach, which enables the use of the whole set of nuclear coordinates in computations and the inclusion of both the effects of the equilibrium position displacements and of normal mode mixing upon hole transfer. The time dependent populations predicted by cumulant approach are in good agreement with those obtained by numerical solution of time dependent Schrödinger equation, even for ultrafast processes, where the Fermi Golden Rule fails.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science , University of Torino , I-10195 Grugliasco , Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia "A. Zambelli" , Università di Salerno , Via Giovanni Paolo II , I-84084 Fisciano (SA) , Italy
| |
Collapse
|
15
|
Comparison of the results of a mean-field mixed quantum/classical method with full quantum predictions for nonadiabatic dynamics: application to the $$\pi \pi ^*/n\pi ^*$$ π π ∗ / n π ∗ decay of thymine. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2218-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Landi A, Borrelli R, Capobianco A, Velardo A, Peluso A. Hole Hopping Rates in Organic Semiconductors: A Second-Order Cumulant Approach. J Chem Theory Comput 2018; 14:1594-1601. [DOI: 10.1021/acs.jctc.7b00858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, University of Torino, I-10195 Grugliasco, Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Amalia Velardo
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II, I-84084 Fisciano (SA), Italy
| |
Collapse
|
17
|
Chen L, Borrelli R, Zhao Y. Dynamics of Coupled Electron–Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State. J Phys Chem A 2017; 121:8757-8770. [DOI: 10.1021/acs.jpca.7b07069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lipeng Chen
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| | - Raffaele Borrelli
- Department
of Agricultural, Forestry and Food Science, Universitá di Torino, I-10095 Grugliasco, Turin, Italy
| | - Yang Zhao
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
18
|
Borrelli R, Gelin MF. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach. J Chem Phys 2017; 145:224101. [PMID: 27984899 DOI: 10.1063/1.4971211] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
19
|
Borrelli R, Gelin MF. The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Ferreri C, Golding BT, Jahn U, Ravanat JL. COST Action CM1201 "Biomimetic Radical Chemistry": free radical chemistry successfully meets many disciplines. Free Radic Res 2016; 50:S112-S128. [PMID: 27750460 DOI: 10.1080/10715762.2016.1248961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The COST Action CM1201 "Biomimetic Radical Chemistry" has been active since December 2012 for 4 years, developing research topics organized into four working groups: WG1 - Radical Enzymes, WG2 - Models of DNA damage and consequences, WG3 - Membrane stress, signalling and defenses, and WG4 - Bio-inspired synthetic strategies. International collaborations have been established among the participating 80 research groups with brilliant interdisciplinary achievements. Free radical research with a biomimetic approach has been realized in the COST Action and are summarized in this overview by the four WG leaders.
Collapse
Affiliation(s)
- Carla Ferreri
- a ISOF, Consiglio Nazionale delle Ricerche, BioFreeRadicals Group , Bologna , Italy
| | - Bernard T Golding
- b School of Chemistry, Bedson Building, Newcastle University , Newcastle-upon-Tyne , UK
| | - Ullrich Jahn
- c Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Prague , Czech Republic
| | - Jean-Luc Ravanat
- d INAC-SCIB & CEA, INAC-SyMMES Laboratoire des Lésions des Acides Nucléiques , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
21
|
Borrelli R, Peluso A. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets. J Chem Phys 2016; 144:114102. [DOI: 10.1063/1.4943538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, Università di Torino, I-10095 Grugliasco, TO, Italy
| | - Andrea Peluso
- Department of Chemistry and Biology, Università di Salerno, I-84081 Fisciano, SA, Italy
| |
Collapse
|