1
|
Cesaretti A, Calzoni E, Montegiove N, Bianconi T, Alebardi M, La Serra MA, Consiglio G, Fortuna CG, Elisei F, Spalletti A. Lighting-Up the Far-Red Fluorescence of RNA-Selective Dyes by Switching from Ortho to Para Position. Int J Mol Sci 2023; 24:ijms24054812. [PMID: 36902248 PMCID: PMC10003335 DOI: 10.3390/ijms24054812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Fluorescence imaging is constantly searching for new far-red emitting probes whose turn-on response is selective upon the interaction with specific biological targets. Cationic push-pull dyes could indeed respond to these requirements due to their intramolecular charge transfer (ICT) character, by which their optical properties can be tuned, and their ability to interact strongly with nucleic acids. Starting from the intriguing results recently achieved with some push-pull dimethylamino-phenyl dyes, two isomers obtained by switching the cationic electron acceptor head (either a methylpyridinium or a methylquinolinium) from the ortho to the para position have been scrutinized for their ICT dynamics, their affinity towards DNA and RNA, and in vitro behavior. By exploiting the marked fluorescence enhancement observed upon complexation with polynucleotides, fluorimetric titrations were employed to evaluate the dyes' ability as efficient DNA/RNA binders. The studied compounds exhibited in vitro RNA-selectivity by localizing in the RNA-rich nucleoli and within the mitochondria, as demonstrated by fluorescence microscopy. The para-quinolinium derivative showed some modest antiproliferative effect on two tumor cell lines as well as improved properties as an RNA-selective far-red probe in terms of both turn-on response (100-fold fluorescence enhancement) and localized staining ability, attracting interest as a potential theranostic agent.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
- Correspondence:
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Tommaso Bianconi
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Martina Alebardi
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Antonietta La Serra
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Giuseppe Consiglio
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Cosimo Gianluca Fortuna
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
2
|
Tuning the Photophysics of Two-Arm Bis[(dimethylamino)styryl]benzene Derivatives by Heterocyclic Substitution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248725. [PMID: 36557858 PMCID: PMC9787945 DOI: 10.3390/molecules27248725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The identification of novel molecular systems with high fluorescence and significant non-linear optical (NLO) properties is a hot topic in the continuous search for new emissive probes. Here, the photobehavior of three two-arm bis[(dimethylamino)styryl]benzene derivatives, where the central benzene was replaced by pyridine, furan, or thiophene, was studied by stationary and time-resolved spectroscopic techniques with ns and fs resolution. The three molecules under investigation all showed positive fluorosolvatochromism, due to intramolecular charge-transfer (ICT) dynamics from the electron-donor dimethylamino groups, and significant fluorescence quantum yields, because of the population of a planar and emissive ICT state stabilized by intramolecular hydrogen-bond-like interactions. The NLO properties (hyperpolarizability coefficient and TPA cross-section) were also measured. The obtained results allowed the role of the central heteroaromatic ring to be disclosed. In particular, the introduction of the thiophene ring guarantees high fluorescent quantum yields irrespective of the polarity of the medium, and the largest hyperpolarizability coefficient because of the increased conjugation. An important and structure-dependent involvement of the triplet state was also highlighted, with the intersystem crossing being competitive with fluorescence, especially in the thiophene derivative, where the triplet was found to significantly sensitize molecular oxygen even in polar environment, leading to possible applications in photodynamic therapy.
Collapse
|
3
|
Acid-base strength and acido(fluoro)chromism of three push-pull derivatives of 2,6-distyrylpyridine. Photochem Photobiol Sci 2022; 21:935-947. [PMID: 35229276 DOI: 10.1007/s43630-022-00184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
The acidochromism and acid-base properties of 2,6-distyrylpyridine (2,6-DStP) derivatives bearing on the sides push/pull substituents (namely two dimethylamino, one nitro, and one methoxy and two nitro groups in the case of 2,6-bis[(E)-2-(4-dimetylaminophenyl)ethenyl]pyridine, 2-[(E)-2-(4-nitrophenyl)ethenyl],6-[(E)-2'-(4'-methoxyphenyl)ethenyl]pyridine and 2,6-bis[(E)-2-(4-nitrophenyl)ethenyl]pyridine, respectively) were investigated by stationary and time-resolved spectroscopies. The sensitivity of the absorption and emission spectrum to the medium acidity was found to enhance in the dimethylamino-derivative relative to the unsubstituted 2,6-DStP, also because of the second protonation by the N(CH3)2 group. Spectrophotometric titrations, also processed by a global fitting approach, gave pKa values, for the protonation of the central pyridine, higher in the derivatives with electron-donor unities and lower in compounds bearing electron-acceptor groups. A fluorometric titration was performed in the case of the dimethylamino-derivative thanks to non-negligible emission efficiencies for both neutral and protonated species, unveiling an attractive naked-eye acido(fluoro)chromism from green to yellow upon pyridine protonation, and then to purple with the second protonation involving the lateral N(CH3)2 substituent. Due to the extremely short excited-state lifetimes, as resulted from femtosecond transient absorption experiments, the pKa values for the excited state (pKa*) were estimated through the Förster cycle, revealing that the monoprotonated species of the dimethylamino-derivative would become upon excitation the only stable form in a wide range of pH.
Collapse
|
4
|
Cesaretti A, Spalletti A, Elisei F, Foggi P, Germani R, Fortuna CG, Carlotti B. The role of twisting in driving excited-state symmetry breaking and enhanced two-photon absorption in quadrupolar cationic pyridinium derivatives. Phys Chem Chem Phys 2021; 23:16739-16753. [PMID: 34318828 DOI: 10.1039/d1cp01888d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two symmetric quadrupolar cationic push-pull compounds with a central electron-acceptor (N+-methylpyrydinium, A+) and different lateral electron-donors, (N,N-dimethylamino and N,N-diphenylamino, D) in a D-π-A+-π-D arrangement, were investigated together with their dipolar counterparts (D-π-A+) for their excited-state dynamics and NLO properties. As for the quadrupolar compounds, attention was focused on excited-state symmetry breaking (ESSB), which leads to a relaxed dipolar excited state. Both electron charge displacements and structural rearrangements were recognized in the excited-state dynamics of these molecules by resorting to femtosecond-resolved broadband fluorescence up-conversion experiments and advanced data analysis, used as a valuable alternative approach for fluorescent molecules compared to time-resolved IR spectroscopy, only suitable for compounds bearing IR markers. Specifically, intramolecular charge transfer (ICT) was found to be guided by ultrafast inertial solvation, while diffusive solvation can drive the twisting of lateral groups to originate twisted-ICT (TICT) states on a picosecond time scale. Yet still, only the bis-N,N-diphenylamino-substituted compound undergoes ESSB, in both highly and sparingly polar solvents, provided that it can experience large amplitude motions to a fully symmetry-broken TICT state. Besides well-known solvation effects, this structural requirement proved to be a necessary condition for these quadrupolar cations to undergo ESSB. In fact, a more efficient uncoupling between the out-of-plane D and A+ groups in the TICT state allows a greater stabilization gained through solvation, relative to the bis-N,N-dimethylamino-substituted derivative, which instead maintains its symmetry. This different behavior parallels the two-photon absorption (TPA) ability, which is greatly enhanced in the case of the bis-N,N-diphenylamino-substituted compound, paving the way for cutting-edge bio-imaging applications.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN) University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
5
|
Tiecco M, Di Guida I, Gentili PL, Germani R, Bonaccorso C, Cesaretti A. Probing the structural features and the micro-heterogeneity of various deep eutectic solvents and their water dilutions by the photophysical behaviour of two fluorophores. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Mencaroni L, Carlotti B, Cesaretti A, Elisei F, Grgičević A, Škorić I, Spalletti A. Competition between fluorescence and triplet production ruled by nitro groups in one-arm and two-arm styrylbenzene heteroanalogues. Photochem Photobiol Sci 2020; 19:1665-1676. [DOI: 10.1039/d0pp00271b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One-arm nitro-stilbenoids shows high triplet yield, appealing for optoelectronic and photovoltaic devices while double-arm analogues, showing appreciable TPA, are candidates as emitting probes and traceable photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Letizia Mencaroni
- Department of Chemistry
- Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN) University of Perugia
- Perugia
- Italy
| | - Benedetta Carlotti
- Department of Chemistry
- Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN) University of Perugia
- Perugia
- Italy
| | - Alessio Cesaretti
- Department of Chemistry
- Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN) University of Perugia
- Perugia
- Italy
| | - Fausto Elisei
- Department of Chemistry
- Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN) University of Perugia
- Perugia
- Italy
| | - Ana Grgičević
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- Zagreb
- Croatia
| | - Irena Škorić
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- Zagreb
- Croatia
| | - Anna Spalletti
- Department of Chemistry
- Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN) University of Perugia
- Perugia
- Italy
| |
Collapse
|
7
|
Li Y, Liu X, Han J, Cao B, Sun C, Diao L, Yin H, Shi Y. Solvent viscosity induces twisted intramolecular charge transfer state lifetime tunable of Thioflavin-T. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117244. [PMID: 31203054 DOI: 10.1016/j.saa.2019.117244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Excited-state deactivation dynamics of Thioflavin-T (ThT) in gradual viscosity solvents were investigated. Femtosecond transient absorption spectra and dynamic decay curves both present significant distinction of ThT in different volume ratios binary mixtures solvents. Dynamics fitting lifetime of twisted intramolecular charge transfer (TICT) state is strongly dependent on solvents viscosity. Compared to rotation corresponding time of ThT in low viscosity solvent (0.6 cp) experimentally coincident well with Stokes-Einstein-Debye (SED) equation, the relation between rotation corresponding time and relatively high viscosity (5.9 cp to 1091.2 cp) is more consistent with fractional SED equation. Combined with optimized geometric structures of ThT by density functional theory and time-dependent density functional theory, further understand TICT state lifetime increases with increasing solvents viscosity. Our work provides a comprehensive understanding of fluorescence molecular rotor (FMR) deactivation process in different viscosity solvents and is helpful to design new FMR.
Collapse
Affiliation(s)
- You Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Xiaochun Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jianhui Han
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Bifa Cao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Chaofan Sun
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Lihe Diao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Hua B, Zhou W, Yang Z, Zhang Z, Shao L, Zhu H, Huang F. Supramolecular Solid-State Microlaser Constructed from Pillar[5]arene-Based Host–Guest Complex Microcrystals. J Am Chem Soc 2018; 140:15651-15654. [DOI: 10.1021/jacs.8b11156] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhaoliang Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haiming Zhu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
9
|
Cesaretti A, Bonaccorso C, Elisei F, Fortuna CG, Mencaroni L, Spalletti A. Photoinduced Intramolecular Charge Transfer and Hyperpolarizability Coefficient in Push-Pull Pyridinium Salts with Increasing Strength of the Acceptor Group. Chempluschem 2018; 83:1021-1031. [DOI: 10.1002/cplu.201800393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry Biology and Biotechnology; and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN); University of Perugia; via Elce di Sotto 8 06123 Perugia Italy
| | - Carmela Bonaccorso
- Department of Chemical Science; University of Catania; viale Andrea Doria 6 95125 Catania Italy
| | - Fausto Elisei
- Department of Chemistry Biology and Biotechnology; and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN); University of Perugia; via Elce di Sotto 8 06123 Perugia Italy
| | - Cosimo G. Fortuna
- Department of Chemical Science; University of Catania; viale Andrea Doria 6 95125 Catania Italy
| | - Letizia Mencaroni
- Department of Chemistry Biology and Biotechnology; and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN); University of Perugia; via Elce di Sotto 8 06123 Perugia Italy
| | - Anna Spalletti
- Department of Chemistry Biology and Biotechnology; and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN); University of Perugia; via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|
10
|
Bonaccorso C, Cesaretti A, Elisei F, Mencaroni L, Spalletti A, Fortuna CG. New Styryl Phenanthroline Derivatives as Model D-π-A-π-D Materials for Non-Linear Optics. Chemphyschem 2018; 19:1917-1929. [PMID: 29702737 DOI: 10.1002/cphc.201800391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 11/06/2022]
Abstract
Four novel push-pull systems combining a central phenanthroline acceptor moiety and two substituted benzene rings, as a part of the conjugated π-system between the donor and the acceptor moieties, have been synthetized through a straightforward and efficient one-step procedure. The chromophores display high fluorescence and a peculiar fluorosolvatochromic behaviour. Ultrafast investigation by means of state-of-the-art femtosecond-resolved transient absorption and fluorescence up-conversion spectroscopies allowed the role of intramolecular charge transfer (ICT) states to be evidenced, also revealing the crucial role played by both, the polarity and proticity of the medium on the excited state dynamics of the chromophores. The ICT processes, responsible for the solvatochromism, also lead to interesting non-linear optical (NLO) properties: namely great two photon absorption cross-sections (hundreds of GM), investigated by the Two Photon Excited Fluorescence (TPEF) technique, and large second order hyperpolarizability coefficients, estimated through a convenient solvatochromic method.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cosimo G Fortuna
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
11
|
Cesaretti A, Carlotti B, Elisei F, Fortuna CG, Consiglio G, Spalletti A. A cationic naphthyl derivative defies the non-equilibrated excited rotamers principle. Phys Chem Chem Phys 2017; 19:5262-5272. [DOI: 10.1039/c6cp08311k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four quasi-isoenergetic ground state (S0) conformers undergo ultrafast rotamer interconversions in the excited state (S1) against the non-equilibrated excited rotamers principle.
Collapse
Affiliation(s)
- A. Cesaretti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - B. Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - F. Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - C. G. Fortuna
- Department of Chemical Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - G. Consiglio
- Department of Chemical Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - A. Spalletti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
12
|
Aschi M, Barone V, Carlotti B, Daidone I, Elisei F, Amadei A. Photoexcitation and relaxation kinetics of molecular systems in solution: towards a complete in silico model. Phys Chem Chem Phys 2016; 18:28919-28931. [PMID: 27725986 DOI: 10.1039/c6cp06167b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical–computational method is proposed for modelling the complete kinetics – from photo-excitation to relaxation – of a chromophore in solution.
Collapse
Affiliation(s)
| | | | - Benedetta Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - Isabella Daidone
- Dipartimento di Scienze Fisiche e Chimiche
- University of l'Aquila
- Italy
| | - Fausto Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - Andrea Amadei
- Dipartimento di Scienze e Tecnologie Chimiche
- Universiy of Roma Tor Vergata
- 00100 Roma
- Italy
| |
Collapse
|
13
|
Cesaretti A, Carlotti B, Gentili PL, Germani R, Spalletti A, Elisei F. Twisting in the excited state of an N-methylpyridinium fluorescent dye modulated by nano-heterogeneous micellar systems. Photochem Photobiol Sci 2016; 15:525-35. [DOI: 10.1039/c5pp00388a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence of an N-methylpyridinium dye was modulated by nano-heterogeneous micellar systems, where its excited state twisting is gradually impaired by the increasing viscosity of the surrounding environment.
Collapse
Affiliation(s)
- A. Cesaretti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - B. Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - P. L. Gentili
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - R. Germani
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - A. Spalletti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - F. Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
14
|
Carlotti B, Benassi E, Cesaretti A, Fortuna CG, Spalletti A, Barone V, Elisei F. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push–pull pyridinium derivatives bearing different electron donors. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp03207e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interconversion between rotamers in S1 was evidenced for a cationic push–pull pyrenyl derivative through a joint femtosecond fluorescence up-conversion and density functional theoretical study.
Collapse
Affiliation(s)
- B. Carlotti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | | | - A. Cesaretti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - C. G. Fortuna
- Department of Chemical Sciences
- University of Catania
- 95125 Catania
- Italy
| | - A. Spalletti
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| | - V. Barone
- Scuola Normale Superiore
- 56126 Pisa
- Italy
| | - F. Elisei
- Department of Chemistry
- Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN)
- University of Perugia
- 06123 Perugia
- Italy
| |
Collapse
|