1
|
Chenchiliyan M, Kübel J, Ooi SA, Salvadori G, Mennucci B, Westenhoff S, Maj M. Ground-state heterogeneity and vibrational energy redistribution in bacterial phytochrome observed with femtosecond 2D IR spectroscopy. J Chem Phys 2023; 158:085103. [PMID: 36859103 DOI: 10.1063/5.0135268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Phytochromes belong to a group of photoreceptor proteins containing a covalently bound biliverdin chromophore that inter-converts between two isomeric forms upon photoexcitation. The existence and stability of the photocycle products are largely determined by the protein sequence and the presence of conserved hydrogen-bonding interactions in the vicinity of the chromophore. The vibrational signatures of biliverdin, however, are often weak and obscured under more intense protein bands, limiting spectroscopic studies of its non-transient signals. In this study, we apply isotope-labeling techniques to isolate the vibrational bands from the protein-bound chromophore of the bacterial phytochrome from Deinococcus radiodurans. We elucidate the structure and ultrafast dynamics of the chromophore with 2D infra-red (IR) spectroscopy and molecular dynamics simulations. The carbonyl stretch vibrations of the pyrrole rings show the heterogeneous distribution of hydrogen-bonding structures, which exhibit distinct ultrafast relaxation dynamics. Moreover, we resolve a previously undetected 1678 cm-1 band that is strongly coupled to the A- and D-ring of biliverdin and demonstrate the presence of complex vibrational redistribution pathways between the biliverdin modes with relaxation-assisted measurements of 2D IR cross peaks. In summary, we expect 2D IR spectroscopy to be useful in explaining how point mutations in the protein sequence affect the hydrogen-bonding structure around the chromophore and consequently its ability to photoisomerize to the light-activated states.
Collapse
Affiliation(s)
- Manoop Chenchiliyan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56126 Pisa, Italy
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
2
|
Vávra J, Sergunin A, Jeřábek P, Shimizu T, Martínková M. Signal transduction mechanisms in heme-based globin-coupled oxygen sensors with a focus on a histidine kinase ( AfGcHK) and a diguanylate cyclase (YddV or EcDosC). Biol Chem 2022; 403:1031-1042. [PMID: 36165459 DOI: 10.1515/hsz-2022-0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Heme is a vital cofactor of proteins with roles in oxygen transport (e.g. hemoglobin), storage (e.g. myoglobin), and activation (e.g. P450) as well as electron transfer (e.g. cytochromes) and many other functions. However, its structural and functional role in oxygen sensing proteins differs markedly from that in most other enzymes, where it serves as a catalytic or functional center. This minireview discusses the mechanism of signal transduction in two heme-based oxygen sensors: the histidine kinase AfGcHK and the diguanylate cyclase YddV (EcDosC), both of which feature a heme-binding domain containing a globin fold resembling that of hemoglobin and myoglobin.
Collapse
Affiliation(s)
- Jakub Vávra
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Artur Sergunin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Jeřábek
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| |
Collapse
|
3
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
4
|
Lengalova A, Fojtikova-Proskova V, Vavra J, Martínek V, Stranava M, Shimizu T, Martinkova M. Kinetic analysis of a globin-coupled diguanylate cyclase, YddV: Effects of heme iron redox state, axial ligands, and heme distal mutations on catalysis. J Inorg Biochem 2019; 201:110833. [PMID: 31520879 DOI: 10.1016/j.jinorgbio.2019.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Heme-based oxygen sensors allow bacteria to regulate their activity based on local oxygen levels. YddV, a globin-coupled oxygen sensor with diguanylate cyclase activity from Escherichia coli, regulates cyclic-di-GMP synthesis based on oxygen availability. Stable and active samples of the full-length YddV protein were prepared by attaching it to maltose binding protein (MBP). To better understand the full-length protein's structure, the interactions between its domains were examined by performing a kinetic analysis. The diguanylate cyclase reaction catalyzed by YddV-MBP exhibited Michaelis-Menten kinetics. Its pH optimum was 8.5-9.0, and catalysis required either Mg2+ or Mn2+; other divalent metal ions gave no activity. The most active form of YddV-MBP had a 5-coordinate Fe(III) heme complex; its kinetic parameters were KmGTP 84 ± 21 μM and kcat 1.2 min-1. YddV-MBP with heme Fe(II), heme Fe(II)-O2, and heme Fe(II)-CO complexes had kcat values of 0.3 min-1, 0.95 min-1, and 0.3 min-1, respectively, suggesting that catalysis is regulated by the heme iron's redox state and axial ligand binding. The kcat values for heme Fe(III) complexes of L65G, L65Q, and Y43A YddV-MBP mutants bearing heme distal amino acid replacements were 0.15 min-1, 0.26 min-1 and 0.54 min-1, respectively, implying that heme distal residues play key regulatory roles by mediating signal transduction between the sensing and functional domains. Ultracentrifugation and size exclusion chromatography experiments showed that YddV-MBP is primarily dimeric in solution, with a sedimentation coefficient around 8. The inactive heme-free H93A mutant is primarily octameric, suggesting that catalytically active dimer formation requires heme binding.
Collapse
Affiliation(s)
- Alzbeta Lengalova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Veronika Fojtikova-Proskova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Jakub Vavra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic
| | - Marketa Martinkova
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Rivera S, Young PG, Hoffer ED, Vansuch GE, Metzler CL, Dunham CM, Weinert EE. Structural Insights into Oxygen-Dependent Signal Transduction within Globin Coupled Sensors. Inorg Chem 2018; 57:14386-14395. [PMID: 30378421 DOI: 10.1021/acs.inorgchem.8b02584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In order to respond to external stimuli, bacteria have evolved sensor proteins linking external signals to intracellular outputs that can then regulate downstream pathways and phenotypes. Globin coupled sensor proteins (GCSs) serve to link environmental O2 levels to cellular processes by coupling a heme-containing sensor globin domain to a catalytic output domain. However, the mechanism by which O2 binding activates these proteins is currently unknown. To provide insights into the signaling mechanism, two distinct dimeric complexes of the isolated globin domain of the GCS from Bordetella pertussis ( BpeGlobin) were solved via X-ray crystallography in which differences in ligand-bound states were observed. Both monomers of one dimer contain Fe(II)-O2 states, while the other dimer consists of the Fe(III)-H2O and Fe(II)-O2 states. These data provide the first molecular insights into the heme pocket conformation of the active Fe(II)-O2 form of these enzymes. In addition, heme distortion modes and heme-protein interactions were found to correlate with the ligation state of the globin, suggesting that these conformational changes play a role in O2-dependent signaling. Fourier transform infrared spectroscopy (FTIR) of the full-length GCS from B. pertussis ( BpeGReg) and the closely related GCS from Pectobacterium carotovorum ssp. carotovorum ( PccGCS) confirmed the importance of an ordered water within the heme pocket and two distal residues (Tyr43 and Ser68) as hydrogen-bond donors. Taken together, this work provides mechanistic insights into BpeGReg O2 sensing and the signaling mechanisms of diguanylate cyclase-containing GCS proteins.
Collapse
Affiliation(s)
- Shannon Rivera
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Paul G Young
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Eric D Hoffer
- Department of Biochemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Gregory E Vansuch
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Carmen L Metzler
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Christine M Dunham
- Department of Biochemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Emily E Weinert
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
6
|
Pavlou A, Yoshimura H, Aono S, Pinakoulaki E. Protein Dynamics of the Sensor Protein HemAT as Probed by Time-Resolved Step-Scan FTIR Spectroscopy. Biophys J 2018; 114:584-591. [PMID: 29414704 DOI: 10.1016/j.bpj.2017.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/09/2022] Open
Abstract
The heme-based aerotactic transducer (HemAT) is an oxygen-sensor protein consisting of a sensor and a signaling domain in the N- and C-terminal regions, respectively. Time-resolved step-scan FTIR spectroscopy was employed to characterize protein intermediate states obtained by photolysis of the carbon monoxide complexes of sensor-domain, full-length HemAT, and the Y70F (B-helix), L92A (E-helix), T95A (E-helix), and Y133F (G-helix) HemAT mutants. We assign the spectral components to discrete substructures, which originate from a helical structure that is solvated (1638 cm-1) and a native helix that is protected from solvation by interhelix tertiary interactions (1654 cm-1). The full-length protein is characterized by an additional amide I absorbance at 1661 cm-1, which is attributed to disordered structure suggesting that further protein conformational changes occur in the presence of the signaling domain in the full-length protein. The kinetics monitored within the amide I absorbance of the polypeptide backbone in the sensor domain exhibit two distinct relaxation phases (t1 = 24 and t2 = 694 μs), whereas that of the full-length protein exhibits monophasic behavior for all substructures in a time range of t = 1253-2090 μs. These observations can be instrumental in monitoring helix motion and the role of specific mutants in controlling the dynamics in the communication pathway from the sensor to the signaling domain. The kinetics observed for the amide I relaxation for the full-length protein indicate that the discrete substructures within full-length HemAT, unlike those of the sensor domain, relax independently.
Collapse
Affiliation(s)
- Andrea Pavlou
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Hideaki Yoshimura
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Shigetoshi Aono
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | | |
Collapse
|
7
|
Pavlou A, Loullis A, Yoshimura H, Aono S, Pinakoulaki E. Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy. Biochemistry 2017; 56:5309-5317. [PMID: 28876054 DOI: 10.1021/acs.biochem.7b00558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HemAT is a heme-containing oxygen sensor protein that controls aerotaxis. Time-resolved step-scan FTIR studies were performed on the isolated sensor domain and full-length HemAT proteins as well as on the Y70F (B-helix), L92A (E-helix), T95A (E-helix), and Y133F (G-helix) mutants to elucidate the effect of the site-specific mutations on the ligand dynamics subsequent to CO photolysis. The mutations aimed to perturb H-bonding and electrostatic interactions near the heme Fe-bound gaseous ligand (CO) and the heme proximal environment. Rebinding of CO to the heme Fe is biphasic in the sensor domain and full-length HemAT as well as in the mutants, with the exception of the Y133F mutant protein. The monophasic rebinding of CO in Y133F suggests that in the absence of the H-bond between Y133 and the heme proximal H123 residue the ligand rebinding process is significantly affected. The role of the proximal environment is also probed by resonance Raman photodissociation experiments, in which the Fe-His mode of the photoproduct of sensor domain HemAT-CO is detected at a frequency higher than that of the deoxy form in the difference resonance Raman spectra. The role of the conformational changes of Y133 (G-helix) and the role of the distal L92 and T95 residues (E-helix) in regulating ligand dynamics in the heme pocket are discussed.
Collapse
Affiliation(s)
- Andrea Pavlou
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andreas Loullis
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Hideaki Yoshimura
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shigetoshi Aono
- Institute for Molecular Science, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Eftychia Pinakoulaki
- Department of Chemistry, University of Cyprus , P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
8
|
Banerji B, Chatterjee M, Pal U, Maiti NC. Molecular Details of Acetate Binding to a New Diamine Receptor by NMR and FT-IR Analyses. J Phys Chem A 2016; 120:2330-41. [DOI: 10.1021/acs.jpca.6b01078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biswadip Banerji
- Organic & Medicinal Chemistry Division and ‡Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Moumita Chatterjee
- Organic & Medicinal Chemistry Division and ‡Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Uttam Pal
- Organic & Medicinal Chemistry Division and ‡Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nakul Chandra Maiti
- Organic & Medicinal Chemistry Division and ‡Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
9
|
Lambry JC, Stranava M, Lobato L, Martinkova M, Shimizu T, Liebl U, Vos MH. Ultrafast Spectroscopy Evidence for Picosecond Ligand Exchange at the Binding Site of a Heme Protein: Heme-Based Sensor YddV. J Phys Chem Lett 2016; 7:69-74. [PMID: 26651267 DOI: 10.1021/acs.jpclett.5b02517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An important question for the functioning of heme proteins is whether different ligands present within the protein moiety can readily exchange with heme-bound ligands. Studying the dynamics of the heme domain of the Escherichia coli sensor protein YddV upon dissociation of NO from the ferric heme by ultrafast spectroscopy, we demonstrate that when the hydrophobic leucine residue in the distal heme pocket is mutated to glycine, in a substantial fraction of the protein water replaces NO as an internal ligand in as fast as ∼4 ps. This process, which is near-barrierless and occurs orders of magnitude faster than the corresponding process in myoglobin, corresponds to a ligand swap of NO with a water molecule present in the heme pocket, as corroborated by molecular dynamics simulations. Our findings provide important new insight into ligand exchange in heme proteins that functionally interact with different external ligands.
Collapse
Affiliation(s)
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova (Albertov) 2030/8, Prague 4, Czech Republic
| | - Laura Lobato
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Marketa Martinkova
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova (Albertov) 2030/8, Prague 4, Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University in Prague , Hlavova (Albertov) 2030/8, Prague 4, Czech Republic
| | - Ursula Liebl
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, 91128 Palaiseau Cedex, France
| |
Collapse
|