1
|
Schio L, Forrer D, Casarin M, Goldoni A, Rogero C, Vittadini A, Floreano L. On surface chemical reactions of free-base and titanyl porphyrins with r-TiO 2(110): a unified picture. Phys Chem Chem Phys 2022; 24:12719-12744. [PMID: 35583960 DOI: 10.1039/d2cp01073a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective we present a comprehensive study of the multiple reaction products of metal-free porphyrins (2H-Ps) in contact with the rutile TiO2(110) surface. In the absence of peripheral functionalization with specific linkers, the porphyrin adsorption is driven by the coordination of the two pyrrolic nitrogen atoms of the macrocycle to two consecutive oxygen atoms of the protruding Obr rows via hydrogen bonding. This chemical interaction favours the iminic nitrogen uptake of hydrogen from near surface layers at room temperature, thus yielding a stable acidic porphyrin (4H-P). In addition, a mild annealing (∼100 °C) triggers the incorporation of a Ti atom in the porphyrin macrocycle (self-metalation). We recently demonstrated that such a low temperature reaction is driven by a Lewis base iminic attack, which lowers the energy barriers for the outdiffusion of Ti interstitial atoms (Tiint) [Kremer et al., Appl. Surf. Sci., 2021, 564, 150403]. In the monolayer (ML) range, the porphyrin adsorption site, corresponding to a TiO-TPP configuration, is extremely stable and tetraphenyl-porphyrins (TPPs) may even undergo conformational distortion (flattening) by partial cyclo-dehydrogenation, while remaining anchored to the O rows up to 450 °C [Lovat et al., Nanoscale, 2017, 9, 11694]. Here we show that, upon self-metalation, isolated molecules at low coverage may jump atop the rows of five-fold coordinated Ti atoms (Ti5f). This configuration is associated with the formation of a new coordination complex, Ti-O-Ti5f, as determined by comparison with the deposition of pristine titanyl-porphyrin (TiO-TPP) molecules. The newly established Ti-O-Ti5f anchoring configuration is found to be stable also beyond the TPP flattening reaction. The anchoring of TiO-TPP to the Ti5f rows is, however, susceptible to the cross-talk between phenyls of adjacent molecules, which ultimately drives the TiO-TPP temperature evolution in the ML range along the same pathway followed by 2H-TPP.
Collapse
Affiliation(s)
- Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza S.S. 14, Km 163.5, I-34149 Trieste, Italy.
| | - Daniel Forrer
- CNR-ICMATE and INSTM, via Marzolo 1, I-35131 Padova, Italy.
| | - Maurizio Casarin
- CNR-ICMATE and INSTM, via Marzolo 1, I-35131 Padova, Italy. .,Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy
| | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A., Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Celia Rogero
- Materials Physics Center MPC, Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), E-20018 San Sebastian, Spain
| | | | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza S.S. 14, Km 163.5, I-34149 Trieste, Italy.
| |
Collapse
|
2
|
Li Q, Li S, Qu M, Xiao J. Anisotropic Impact Sensitivity of Metal-Free Molecular Perovskite High-Energetic Material (C 6H 14N 2)(NH 2NH 3)(ClO 4) 3 by First-Principles Study. ACS OMEGA 2022; 7:17185-17191. [PMID: 35647461 PMCID: PMC9134386 DOI: 10.1021/acsomega.2c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Density functional theory simulations were carried out to investigate energetic molecular perovskite (C6H14N2)(NH2NH3)(ClO4)3 which was a new type energetic material promising for future application. The electronic properties, surface energy, and hydrogen bonding of (100), (010), (011), (101), (111) surfaces were studied, and the anisotropic impact sensitivity of these surfaces were reported. By comparing the values of the band gaps for different surface structures, we found that the (100) surface has the lowest sensitivity, while the (101) surface was considered to be much more sensitive than the others. The results for the total density of states further validated the previous conclusion obtained from the band gap. Additionally, the calculated surface energy indicated that surface energy was positively correlated with impact sensitivity. Hydrogen bond content of the surface structures showed distinct variability according to the two-dimensional fingerprint plots. In particular, the hydrogen bond content of (100) surface was higher than that of other surfaces, indicating that the impact sensitivity of (100) surface is the lowest.
Collapse
|
3
|
Kumar C, Luber S. Robust ΔSCF calculations with direct energy functional minimization methods and STEP for molecules and materials. J Chem Phys 2022; 156:154104. [PMID: 35459303 DOI: 10.1063/5.0075927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The direct energy functional minimization method using the orbital transformation (OT) scheme in the program package CP2K has been employed for Δ self-consistent field (ΔSCF) calculations. The OT method for non-uniform molecular orbitals occupations allows us to apply the ΔSCF method for various kinds of molecules and periodic systems. Vertical excitation energies of heteroaromatic molecules and condensed phase systems, such as solvated ethylene and solvated uracil obeying periodic boundary conditions, are reported using the ΔSCF method. In addition, a Re-phosphate molecule attached to the surface of anatase (TiO2) has been investigated. Additionally, we have implemented a recently proposed state-targeted energy projection ΔSCF algorithm [K. Carter-Fenk and J. M. Herbert, J. Chem. Theory Comput. 16(8), 5067-5082 (2020)] for diagonalization based SCF in CP2K. It is found that the OT scheme provides a smooth and robust SCF convergence for all investigated excitation energies and (non-)periodic systems.
Collapse
Affiliation(s)
- Chandan Kumar
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Weder N, Probst B, Sévery L, Fernández-Terán RJ, Beckord J, Blacque O, Tilley SD, Hamm P, Osterwalder J, Alberto R. Mechanistic insights into photocatalysis and over two days of stable H 2 generation in electrocatalysis by a molecular cobalt catalyst immobilized on TiO 2. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00330a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular and heterogeneous water reduction combined: Over 2 days of electrocatalysis of a cobalt polypyridyl catalyst immobilized on TiO2.
Collapse
Affiliation(s)
- Nicola Weder
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Benjamin Probst
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Laurent Sévery
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | | | - Jan Beckord
- Department of Physics
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Olivier Blacque
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - S. David Tilley
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Peter Hamm
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | | | - Roger Alberto
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| |
Collapse
|
5
|
Sajid H, Ullah F, Yar M, Ayub K, Mahmood T. Superhalogen doping: a new and effective approach to design materials with excellent static and dynamic NLO responses. NEW J CHEM 2020. [DOI: 10.1039/d0nj02291h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first-ever example where superhalogen doping alone is introduced as a new and effective approach to impart large NLO responses.
Collapse
Affiliation(s)
- Hasnain Sajid
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Faizan Ullah
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Muhammad Yar
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Khurshid Ayub
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| | - Tariq Mahmood
- Department of Chemistry
- COMSATS University Islamabad
- Abbottabad-22060
- Pakistan
| |
Collapse
|
6
|
Combined orbital tomography study of multi-configurational molecular adsorbate systems. Nat Commun 2019; 10:5255. [PMID: 31748503 PMCID: PMC6868194 DOI: 10.1038/s41467-019-13254-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3d$$\end{document}3d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems. The shape and energy of frontier orbitals determine the reactivity of molecular systems. Combining orbital tomography based on photoelectron spectroscopy with electron diffraction and DFT, the authors investigate a complex multi-configurational adsorbate system revealing adsorptions geometries and hierarchy and geometry of molecular orbitals.
Collapse
|
7
|
Theoretical investigation of metalated and unmetalated pyrphyrins immobilized on Ag(111) surface. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00942-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Tada K, Maeda Y, Ozaki H, Tanaka S, Yamazaki SI. Theoretical investigation on the interaction between Rh III octaethylporphyrin and a graphite basal surface: a comparison study of DFT, DFT-D, and AFM. Phys Chem Chem Phys 2018; 20:20235-20246. [PMID: 30033464 DOI: 10.1039/c8cp02923g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using density functional theory based calculations and atomic-force-microscopy observations, we investigated the interaction between [RhIII(OEP)(Cl)] (OEP = octaethylporphyrin) and a graphite basal surface, and the electronic structure of [RhIII(OEP)(Cl)]/graphite. The [RhIII(OEP)(Cl)] complex has an electronic structure effective for CO activation, possessing a closed singlet structure as its ground state; hence, both σ-donation from the CO molecule (anode-reaction reactant) to RhIII, and π-back-donation from RhIII to CO, occur, because the [RhIII(OEP)(Cl)] complex does not have a singlet occupied molecular orbital on the porphyrin ring, the π-π stacking interaction between porphyrin and graphite is not present and their interaction is dominated by dispersion forces. The [RhIII(OEP)(Cl)] complex easily diffused on the graphite basal surface, and an aggregated structure of [RhIII(OEP)(Cl)] was observed by atomic force microscopy. The difference of the electronic structures of [RhIII(OEP)(Cl)] before and after its adsorption is very small, the dispersion force being the dominant force for the adsorption. However, the lowest unoccupied molecular orbital of [RhIII(OEP)(Cl)]/graphite is a σ bonding orbital between RhIII and graphite that will cause fast electron transfer from [RhIII(OEP)(Cl)] to graphite during the CO electro-oxidation; this would be a reason why the carbon-supported [RhIII(OEP)(Cl)] has high catalytic activity for CO electro-oxidation.
Collapse
Affiliation(s)
- Kohei Tada
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | |
Collapse
|
9
|
Weak binding mode of CH 4 on rutile crystallites from density functional theory calculations. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Lovat G, Forrer D, Abadia M, Dominguez M, Casarin M, Rogero C, Vittadini A, Floreano L. Very high temperature tiling of tetraphenylporphyrin on rutile TiO 2(110). NANOSCALE 2017; 9:11694-11704. [PMID: 28776050 DOI: 10.1039/c7nr04093h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We demonstrate the thermal stability up to 450 °C of a titanium(iv)-porphyrin monolayer grown on the rutile TiO2(110) surface. Starting from a film of metal-free tetra-phenyl-porphyrin, 2HTPP, deposited at room temperature, we show that, beyond the self-metalation reaction at 150°-200 °C, a second phase transition takes place at ∼350 °C. Using surface diffraction and microscopy, we observe a change of the phase symmetry from (2 × 4)-obliq to (2 × 6)-rect. Core level photoemission indicates that the chemical states of both the molecular tetrapyrrolic macrocycle and the substrate are unchanged. X-ray absorption spectroscopy reveals that the driving mechanism is a rotation of the phenyl terminations towards the substrate (flattening) that triggers a conformational change of the molecule through partial cyclo-dehydrogenation. From comparison with first principles calculations, we show that the common feature of these multiple phase transitions is the chemical nature of the porphyrin bonding atop the substrate oxygen rows: the coordination of the macrocycle central pocket to the oxygen atoms beneath is preserved throughout both the self-metalation and flattening reactions. The molecular orientation and arrangement are determined by steric constraints and intermolecular interactions, whereas the specific adsorption site is further stabilized by the interaction of the peripheral C-H network with the adjacent oxygen rows. Porphyrins are thus trapped at the TiO2(110) surface, where they demonstrate an exceptionally high thermal stability (up to ∼450 °C), which makes this interface potentially useful for sensors and photocatalysis applications in harsh environments.
Collapse
Affiliation(s)
- Giacomo Lovat
- CNR-IOM, Laboratorio Nazionale TASC, I-34149 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Graf M, Mette G, Leuenberger D, Gurdal Y, Iannuzzi M, Zabka WD, Schnidrig S, Probst B, Hutter J, Alberto R, Osterwalder J. The impact of metalation on adsorption geometry, electronic level alignment and UV-stability of organic macrocycles on TiO 2(110). NANOSCALE 2017; 9:8756-8763. [PMID: 28616947 DOI: 10.1039/c7nr02317k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal complexes of the tetradentate bipyridine based macrocycle pyrphyrin (Pyr) have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on stoichiometric TiO2(110) is investigated in ultrahigh vacuum by means of scanning tunneling microscopy, photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. In a joint experimental and computational effort, the local adsorption geometry at low coverage, the long-range molecular ordering at higher coverage and the electronic structure have been determined for both the bare ligand and the cobalt-metalated Pyr molecule on TiO2. The energy level alignment of CoPyr/TiO2 supports electron injection into TiO2 upon photoexcitation of the CoPyr complex and thus renders it a potential sensitizer dye. Importantly, Co-incorporation is found to stabilize the Pyr molecule against photo-induced degradation, while the bare ligand is decomposed rapidly under continuous UV-irradiation. This interesting phenomenon is discussed in terms of additional de-excitation channels for electronically highly excited molecular states.
Collapse
Affiliation(s)
- Manuel Graf
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | - Gerson Mette
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | | | - Yeliz Gurdal
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | - Stephan Schnidrig
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Benjamin Probst
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Roger Alberto
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Osterwalder
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|
12
|
Abbaspour Tamijani A, Ebrahimiaqda E. (110) Facet of rutile-structured GeO2: an ab initio investigation. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1307468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Elham Ebrahimiaqda
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Luber S. Sum Frequency Generation of Acetonitrile on a Rutile (110) Surface from Density Functional Theory-Based Molecular Dynamics. J Phys Chem Lett 2016; 7:5183-5187. [PMID: 27973890 DOI: 10.1021/acs.jpclett.6b02530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the calculation of vibrational sum frequency generation for molecules adsorbed on a semiconductor surface via density functional theory-based molecular dynamics. Using an efficient approach relying on the Gaussian and plane waves method and density functional perturbation theory, acetonitrile adsorbed on a rutile (110) surface has been studied, the vapor-solid interface of which has recently been investigated experimentally. Further analysis of the orientation of the acetonitrile molecules directly adsorbed on the rutile (110) surface agrees well with parameters derived from experiment. This opens a promising way for detailed study of semiconductor interfaces, which is of particular importance with respect to numerous applications such as, for instance, in materials design.
Collapse
Affiliation(s)
- Sandra Luber
- Department of Chemistry C, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R, Osterwalder J. From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111). NANOSCALE 2016; 8:7958-7968. [PMID: 27006307 DOI: 10.1039/c5nr08953k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.
Collapse
Affiliation(s)
- Gerson Mette
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | - Denys Sutter
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| | - Yeliz Gurdal
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Stephan Schnidrig
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Benjamin Probst
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Marcella Iannuzzi
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Roger Alberto
- Institut für Chemie, Universität Zürich, CH-8057 Zürich, Switzerland
| | - Jürg Osterwalder
- Physik-Institut, Universität Zürich, CH-8057 Zürich, Switzerland.
| |
Collapse
|