1
|
Bonito CA, Ferreira RJ, Ferreira MJU, Gillet JP, Cordeiro MNDS, Dos Santos DJVA. Long-range communication between transmembrane- and nucleotide-binding domains does not depend on drug binding to mutant P-glycoprotein. J Biomol Struct Dyn 2023; 41:14428-14437. [PMID: 36858814 DOI: 10.1080/07391102.2023.2181633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/12/2023] [Indexed: 03/03/2023]
Abstract
In this study, the impact of four P-gp mutations (G185V, G830V, F978A and ΔF335) on drug-binding and efflux-related signal-transmission mechanism was comprehensively evaluated in the presence of ligands within the drug-binding pocket (DBP), experimentally related with changes in their drug efflux profiles. The severe repacking of the transmembrane helices (TMH), induced by mutations and exacerbated by the presence of ligands, indicates that P-gp is sensitive to perturbations in the transmembrane region. Alterations on drug-binding were also observed as a consequence of the TMH repacking, but were not always correlated with alterations on ligands binding mode and/or binding affinity. Finally, and although all P-gp variants holo systems showed considerable changes in the intracellular coupling helices/nucleotide-binding domain (ICH-NBD) interactions, they seem to be primarily induced by the mutation itself rather than by the presence of ligands within the DBP. The data further suggest that the changes in drug efflux experimentally reported are mostly related with changes on drug specificity rather than effects on signal-transmission mechanism. We also hypothesize that an increase in the drug-binding affinity may also be related with the decreased drug efflux, while minor changes in binding affinities are possibly related with the increased drug efflux observed in transfected cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cátia A Bonito
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
| | - Ricardo J Ferreira
- Red Glead Discovery AB, Medicon Village, Lund, Sweden
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, Faculty of Medicine, University of Namur, Namur, Belgium
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
| | - Daniel J V A Dos Santos
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
2
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
3
|
Wang L, Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020; 696:108675. [PMID: 33197430 DOI: 10.1016/j.abb.2020.108675] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) caused by overexpressed permeability-glycoprotein (P-gp) in cancer cells is the main barrier for the cure of cancers. P-gp can pump many chemotherapeutic drugs, which is a viable target to overcome P-gp-mediated MDR by efficient inhibitors of P-gp. However, limited understanding of the efflux mechanism by human P-gp hinders the development of efficient inhibitors. Herein, the transport of a P-gp inhibitor, verapamil, by human P-gp has been investigated using targeted molecular dynamics simulations and energetics analysis based on our previous research on the transport of a drug (doxorubicin). The energetics analysis identifies that the driving forces for the transport of verapamil are electrostatic repulsions contributed by the positively charged residues in the initial stage and then hydrophobic interactions contributed by the important residues in the later stage. This scenario is generally consistent with that in the transport of doxorubicin. However, the positively charged residues and the important residues for the transport of verapamil are incompletely consistent with the relative residues for the transport of doxorubicin. Moreover, the binding free energy contributions of the positively charged residues for the transport of verapamil are generally higher than them for the transport of doxorubicin, while the important residues constitute significantly different binding free energy compositions in the transports of the two substrates. Consequently, the pathway for the transport of verapamil is identified, which shares only two residues (F336 and M986) with the pathway of doxorubicin. This may imply the weak competitiveness of verapamil with doxorubicin in the substrate efflux. Taken together, this work provided new insights into the efflux mechanisms by human P-gp and would be beneficial in the design of potent P-gp inhibitors.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Ferreira RJ, Gajdács M, Kincses A, Spengler G, Dos Santos DJVA, Ferreira MJU. Nitrogen-containing naringenin derivatives for reversing multidrug resistance in cancer. Bioorg Med Chem 2020; 28:115798. [PMID: 33038666 DOI: 10.1016/j.bmc.2020.115798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Naringenin (1), isolated from Euphorbia pedroi, was previously derivatized yielding compounds 2-13. In this study, aiming at expanding the pool of analogues of the flavanone core towards better multidrug resistance (MDR) reversal agents, alkylation reactions and chemical modification of the carbonyl moiety was performed (15-39). Compounds structures were assigned mainly by 1D and 2D NMR experiments. Compounds 1-39 were assessed as MDR reversers, in human ABCB1-transfected mouse T-lymphoma cells, overexpressing P-glycoprotein (P-gp). The results revealed that O-methylation at C-7, together with the introduction of nitrogen atoms and aromatic moieties at C-4 or C-4', significantly improved the activity, being compounds 27 and 37 the strongest P-gp modulators and much more active than verapamil. In combination assays, synergistic interactions of selected compounds with doxorubicin substantiated the results. While molecular docking suggested that flavanone derivatives act as competitive modulators, molecular dynamics showed that dimethylation promotes binding to a modulator-binding site. Moreover, flavanones may also interact with a vicinal ATP-binding site in both nucleotide-binding domains, hypothesizing an allosteric mode of action.
Collapse
Affiliation(s)
- Ricardo J Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary
| | - Daniel J V A Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
5
|
Mollazadeh S, Hadizadeh F, Ferreira RJ. Theoretical studies on 1,4-dihydropyridine derivatives as P-glycoprotein allosteric inhibitors: insights on symmetry and stereochemistry. J Biomol Struct Dyn 2020; 39:4752-4763. [DOI: 10.1080/07391102.2020.1780942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Isca VMS, Ferreira RJ, Garcia C, Monteiro CM, Dinic J, Holmstedt S, André V, Pesic M, dos Santos DJVA, Candeias NR, Afonso CAM, Rijo P. Molecular Docking Studies of Royleanone Diterpenoids from Plectranthus spp. as P-Glycoprotein Inhibitors. ACS Med Chem Lett 2020; 11:839-845. [PMID: 32435393 DOI: 10.1021/acsmedchemlett.9b00642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The development of multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Several abietane diterpenes with antitumoral activities have been isolated from Plectranthus spp. such as 6,7-dehydroroyleanone (DHR, 1) and 7α-acetoxy-6β-hydroxyroyleanone (AHR, 2). Several royleanone derivatives were prepared through hemisynthesis from natural compounds 1 and 2 to achieve a small library of products with enhanced anti-P-glycoprotein activity. Nonetheless, some derivatives tend to be unstable. Therefore, to reason such lack of stability, the electron density based local reactivity descriptors condensed Fukui functions and dual descriptor were calculated for several derivatives of DHR. Additionally, molecular docking and molecular dynamics studies were performed on several other derivatives to clarify the molecular mechanisms by which they may exert their inhibitory effect in P-gp activity. The analysis on local reactivity descriptors was important to understand possible degradation pathways and to guide further synthetic approaches toward new royleanone derivatives. A molecular docking study suggested that the presence of aromatic moieties increases the binding affinity of royleanone derivatives toward P-gp. It further suggests that one royleanone benzoylated derivative may act as a noncompetitive efflux modulator when bound to the M-site. The future generation of novel royleanone derivatives will involve (i) a selective modification of position C-12 with chemical moieties smaller than unsubstituted benzoyl rings and (ii) the modification of the substitution pattern of the benzoyloxy moiety at position C-6.
Collapse
Affiliation(s)
- Vera M. S. Isca
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ricardo J. Ferreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Catarina Garcia
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Campus
Universitario, 28871 Alcalá de Henares, Spain
| | - Carlos M. Monteiro
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jelena Dinic
- Institute for Biological Research “Siniša Stanković“, National Institute of Republic of Serbia University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Suvi Holmstedt
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Milica Pesic
- Institute for Biological Research “Siniša Stanković“, National Institute of Republic of Serbia University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Daniel J. V. A. dos Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101 Tampere, Finland
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Patrícia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Subramanian N, Schumann-Gillett A, Mark AE, O’Mara ML. Probing the Pharmacological Binding Sites of P-Glycoprotein Using Umbrella Sampling Simulations. J Chem Inf Model 2018; 59:2287-2298. [DOI: 10.1021/acs.jcim.8b00624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nandhitha Subramanian
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
- Research School of Chemistry (RSC), Australian National University, Canberra, ACT 2601, Australia
| | | | - Alan E. Mark
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
- The Institute for Molecular Biosciences (IMB), University of Queensland, Brisbane, QLD 4072, Australia
| | - Megan L. O’Mara
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Structure-function relationships in ABCG2: insights from molecular dynamics simulations and molecular docking studies. Sci Rep 2017; 7:15534. [PMID: 29138424 PMCID: PMC5686161 DOI: 10.1038/s41598-017-15452-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/25/2017] [Indexed: 12/29/2022] Open
Abstract
Efflux pumps of the ATP-binding cassette transporters superfamily (ABC transporters) are frequently involved in the multidrug-resistance (MDR) phenomenon in cancer cells. Herein, we describe a new atomistic model for the MDR-related ABCG2 efflux pump, also named breast cancer resistance protein (BCRP), based on the recently published crystallographic structure of the ABCG5/G8 heterodimer sterol transporter, a member of the ABCG family involved in cholesterol homeostasis. By means of molecular dynamics simulations and molecular docking, a far-reaching characterization of the ABCG2 homodimer was obtained. The role of important residues and motifs in the structural stability of the transporter was comprehensively studied and was found to be in good agreement with the available experimental data published in literature. Moreover, structural motifs potentially involved in signal transmission were identified, along with two symmetrical drug-binding sites that are herein described for the first time, in a rational attempt to better understand how drug binding and recognition occurs in ABCG2 homodimeric transporters.
Collapse
|
9
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
10
|
Subramanian N, Condic-Jurkic K, O'Mara ML. Structural and dynamic perspectives on the promiscuous transport activity of P-glycoprotein. Neurochem Int 2016; 98:146-52. [PMID: 27180050 DOI: 10.1016/j.neuint.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
Abstract
The multidrug transporter P-glycoprotein (P-gp) is expressed in the blood-brain barrier endothelium where it effluxes a range of drug substrates, preventing their accumulation within the brain. P-gp has been studied extensively for 40 years because of its crucial role in the absorption, distribution, metabolism and elimination of a range of pharmaceutical compounds. Despite this, many aspects of the structure-function mechanism of P-gp are unresolved. Here we review the emerging role of molecular dynamics simulation techniques in our understanding of the membrane-embedded conformation of P-gp. We discuss its conformational plasticity in the presence and absence of ATP, and recent efforts to characterize the drug binding sites and uptake pathways.
Collapse
Affiliation(s)
- Nandhitha Subramanian
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2601, Australia
| | - Karmen Condic-Jurkic
- School of Chemistry and Molecular Biosciences (SCMB), University of Queensland, Brisbane, QLD, 4072, Australia
| | - Megan L O'Mara
- Research School of Chemistry (RSC), The Australian National University, Canberra, ACT, 2601, Australia. megan.o'
| |
Collapse
|