1
|
Li J, Wen J, Wu K, Li L, Fang L, Zeng S. Integrating Physiology, Cytology, and Transcriptome to Reveal the Leaf Variegation Mechanism in Phalaenopsis Chia E Yenlin Variegata Leaves. Biomolecules 2024; 14:963. [PMID: 39199351 PMCID: PMC11352648 DOI: 10.3390/biom14080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Phalaenopsis orchids, with their unique appearance and extended flowering period, are among the most commercially valuable Orchidaceae worldwide. Particularly, the variegation in leaf color of Phalaenopsis significantly enhances the ornamental and economic value and knowledge of the molecular mechanism of leaf-color variegation in Phalaenopsis is lacking. In this study, an integrative analysis of the physiology, cytology, and transcriptome profiles was performed on Phalaenopsis Chia E Yenlin Variegata leaves between the green region (GR) and yellow region (YR) within the same leaf. The total chlorophyll and carotenoid contents in the YR exhibited a marked decrease of 72.18% and 90.21%, respectively, relative to the GR. Examination of the ultrastructure showed that the chloroplasts of the YR were fewer and smaller and exhibited indistinct stromal lamellae, ruptured thylakoids, and irregularly arranged plastoglobuli. The transcriptome sequencing between the GR and YR led to a total of 3793 differentially expressed genes, consisting of 1769 upregulated genes and 2024 downregulated genes. Among these, the chlorophyll-biosynthesis-related genes HEMA, CHLH, CRD, and CAO showed downregulation, while the chlorophyll-degradation-related gene SGR had an upregulated expression in the YR. Plant-hormone-related genes and transcription factors MYBs (37), NACs (21), ERFs (20), bHLH (13), and GLK (2), with a significant difference, were also analyzed. Furthermore, qRT-PCR experiments validated the above results. The present work establishes a genetic foundation for future studies of leaf-pigment mutations and may help to improve the economic and breeding values of Phalaenopsis.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Rankelytė G, Gelzinis A, Robert B, Valkunas L, Chmeliov J. Environment-dependent chlorophyll-chlorophyll charge transfer states in Lhca4 pigment-protein complex. FRONTIERS IN PLANT SCIENCE 2024; 15:1412750. [PMID: 39170787 PMCID: PMC11335733 DOI: 10.3389/fpls.2024.1412750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Photosystem I (PSI) light-harvesting antenna complexes LHCI contain spectral forms that absorb and emit photons of lower energy than that of its primary electron donor, P700. The most red-shifted fluorescence is associated with the Lhca4 complex. It has been suggested that this red emission is related to the inter-chlorophyll charge transfer (CT) states. In this work we present a systematic quantum-chemical study of the CT states in Lhca4, accounting for the influence of the protein environment by estimating the electrostatic interactions. We show that significant energy shifts result from these interactions and propose that the emission of the Lhca4 complex is related not only to the previously proposed a603+-a608- state, but also to the a602+-a603- state. We also investigate how different protonation patterns of protein amino acids affect the energetics of the CT states.
Collapse
Affiliation(s)
- Gabrielė Rankelytė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
3
|
Lebedeva IV, Jornet-Somoza J. Optical properties and exciton transfer between N-heterocyclic carbene iridium(III) complexes for blue light-emitting diode applications from first principles. J Chem Phys 2024; 160:084107. [PMID: 38391015 DOI: 10.1063/5.0193161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
N-heterocyclic carbene (NHC) iridium(III) complexes are considered as promising candidates for blue emitters in organic light-emitting diodes. They can play the roles of the emitter as well as of electron and hole transporters in the same emission layer. We investigate optical transitions in such complexes with account of geometry and electronic structure changes upon excitation or charging and exciton transfer between the complexes from first principles. It is shown that excitation of NHC iridium complexes is accompanied by a large reorganization energy ∼0.7 eV and a significant loss in the oscillator strength, which should lead to low exciton diffusion. Calculations with account of spin-orbit coupling reveal a small singlet-triplet splitting ∼0.1 eV, whereas the oscillator strength for triplet excitations is found to be an order of magnitude smaller than for the singlet ones. The contributions of the Förster and Dexter mechanisms are analyzed via the explicit integration of transition densities. It is shown that for typical distances between emitter complexes in the emission layer, the contribution of the Dexter mechanism should be negligible compared to the Förster mechanism. At the same time, the ideal dipole approximation, although giving the correct order of the exciton coupling, fails to reproduce the result taking into account spatial distribution of the transition density. For charged NHC complexes, we find a number of optical transitions close to the emission peak of the blue emitter with high exciton transfer rates that can be responsible for exciton-polaron quenching. The nature of these transitions is analyzed.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Joaquim Jornet-Somoza
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, CFM CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Mérgola-Greef J, Milne BF. First-principles study of electronic and optical properties in 1-dimensional oligomeric derivatives of telomestatin. Phys Chem Chem Phys 2023; 25:12744-12753. [PMID: 37114806 DOI: 10.1039/d3cp01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Real-space self-interaction corrected (time-dependent) density functional theory has been used to investigate the ground-state electronic structure and optical absorption profiles of a series of linear oligomers inspired by the natural product telomestatin. Length-dependent development of plasmonic excitations in the UV region is seen in the neutral species which is augmented by polaron-type absorption with tunable wavelengths in the IR when the chains are doped with an additional electron/hole. Combined with a lack of absorption in the visible region this suggests these oligomers as good candidates for applications such as transparent antennae in dye-sensitised solar energy collection materials. Due to strong longitudinal polarisation in their absorption spectra, these compounds are also indicated for use in nano-structured devices displaying orientation-sensitive optical responses.
Collapse
Affiliation(s)
- Joëlle Mérgola-Greef
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
| | - Bruce F Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, AB24 3UE, Old Aberdeen, UK.
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
5
|
Trepl T, Schelter I, Kümmel S. Analyzing Excitation-Energy Transfer Based on the Time-Dependent Density Functional Theory in Real Time. J Chem Theory Comput 2022; 18:6577-6587. [PMID: 36268773 DOI: 10.1021/acs.jctc.2c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitation-energy transfer is a key step in processes such as photosynthesis that convert light into other forms of energy. Time-dependent density functional theory (DFT) in real time is ideal for the first-principles simulation of such processes due to its computational efficiency. We here demonstrate how real-time DFT can be used for analyzing excitation-energy transfer from first-principles. We discuss several measures of energy transfer that are based solely on the time-dependent density, are well founded in the DFT framework, allow for intuitive understanding and visualization, and reproduce important limiting cases of an analytical model. We demonstrate their usefulness in calculations for model systems, both with static nuclei and in the context of DFT-based Ehrenfest dynamics.
Collapse
Affiliation(s)
- T Trepl
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - I Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - S Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
6
|
Wang S, Lin S, Fang Q, Gyampoh R, Lu Z, Gao Y, Clarke DJ, Wu K, Trembleau L, Yu Y, Kyeremeh K, Milne BF, Tabudravu J, Deng H. A ribosomally synthesised and post-translationally modified peptide containing a β-enamino acid and a macrocyclic motif. Nat Commun 2022; 13:5044. [PMID: 36028509 PMCID: PMC9415263 DOI: 10.1038/s41467-022-32774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are structurally complex natural products with diverse bioactivities. Here we report discovery of a RiPP, kintamdin, for which the structure is determined through spectroscopy, spectrometry and genomic analysis to feature a bis-thioether macrocyclic ring and a β-enamino acid residue. Biosynthetic investigation demonstrated that its pathway relies on four dedicated proteins: phosphotransferase KinD, Lyase KinC, kinase homolog KinH and flavoprotein KinI, which share low homologues to enzymes known in other RiPP biosynthesis. During the posttranslational modifications, KinCD is responsible for the formation of the characteristic dehydroamino acid residues including the β-enamino acid residue, followed by oxidative decarboxylation on the C-terminal Cys and subsequent cyclization to provide the bis-thioether ring moiety mediated by coordinated action of KinH and KinI. Finally, conserved genomic investigation allows further identification of two kintamdin-like peptides among the kin-like BGCs, suggesting the occurrence of RiPPs from actinobacteria. The chemical diversity of peptides from ribosomal origin is a growing field of research. Here, the authors report the discovery, genomic and biosynthetic investigations of kintamdin, a ribosomally synthesized and post-translationally modified peptides featuring a beta-enamino acid and a bis-thioether macrocyclic motif.
Collapse
Affiliation(s)
- Shan Wang
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Sixing Lin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Fang
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Roland Gyampoh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana
| | - Zhou Lu
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Yingli Gao
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK.,College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu Province, China
| | - David J Clarke
- EastChem, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Laurent Trembleau
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56, Legon-Accra, Ghana.
| | - Bruce F Milne
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK. .,CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
| | - Jioji Tabudravu
- School of Natural Sciences, University of Central Lancashire, PR1 2HE, Preston, England, United Kingdom.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK.
| |
Collapse
|
7
|
Li J, Olevano V. Bethe-Salpeter equation insights into the photo-absorption function and exciton structure of chlorophyll a and b in light-harvesting complex II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112475. [PMID: 35644069 DOI: 10.1016/j.jphotobiol.2022.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
The photo-absorption process and the excitation of chlorophyll (Chl) is the primary and essential step of photosynthesis in green plants. By solving the Bethe-Salpeter equation (BSE) on top of the GW approximation within ab initio many-body perturbation theory, we calculate the photo-absorption function and the excitons structure of Chl a and b in their in vivo conformations as measured by X-ray diffraction in the light-harvesting complex (LHC) II. BSE optical absorption spectra are in good agreement with the experiment and we discuss residual discrepancies. The experimental evidence of multiple Chla forms in vivo is explained by BSE. The Chla and Chlb BSE exciton wavefunctions present important charge-transfer differences on the Soret band. Q excitons are almost identical, apart from charge (both electron and hole) localization on the Chlb C7 aldheide formyl group, absent on the Chla methyl C7, that is exactly the group where the two chlorophylls differ.
Collapse
Affiliation(s)
- Jing Li
- Univ. Grenoble Alpes, Grenoble 38000, France; CEA, Leti, Minatec Campus, Grenoble 38054, France; CNRS, Institut Néel, Grenoble 38042, France; ETSF, Nano-Bio-Pharma Spectroscopy group, Grenoble 38000, France.
| | - Valerio Olevano
- Univ. Grenoble Alpes, Grenoble 38000, France; CNRS, Institut Néel, Grenoble 38042, France; ETSF, Nano-Bio-Pharma Spectroscopy group, Grenoble 38000, France.
| |
Collapse
|
8
|
Mikalčiūtė A, Gelzinis A, Mačernis M, Büchel C, Robert B, Valkunas L, Chmeliov J. Structure-based model of fucoxanthin-chlorophyll protein complex: Calculations of chlorophyll electronic couplings. J Chem Phys 2022; 156:234101. [PMID: 35732526 DOI: 10.1063/5.0092154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diatoms are a group of marine algae that are responsible for a significant part of global oxygen production. Adapted to life in an aqueous environment dominated by the blue-green light, their major light-harvesting antennae-fucoxanthin-chlorophyll protein complexes (FCPs)-exhibit different pigment compositions than of plants. Despite extensive experimental studies, until recently the theoretical description of excitation energy dynamics in these complexes was limited by the lack of high-resolution structural data. In this work, we use the recently resolved crystallographic information of the FCP complex from Phaeodactylum tricornutum diatom [Wang et al., Science 363, 6427 (2019)] and quantum chemistry-based calculations to evaluate the chlorophyll transition dipole moments, atomic transition charges from electrostatic potential, and the inter-chlorophyll couplings in this complex. The obtained structure-based excitonic couplings form the foundation for any modeling of stationary or time-resolved spectroscopic data. We also calculate the inter-pigment Förster energy transfer rates and identify two quickly equilibrating chlorophyll clusters.
Collapse
Affiliation(s)
- Austėja Mikalčiūtė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Mindaugas Mačernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Avenue 9, LT-10222 Vilnius, Lithuania
| |
Collapse
|
9
|
Andrade X, Pemmaraju CD, Kartsev A, Xiao J, Lindenberg A, Rajpurohit S, Tan LZ, Ogitsu T, Correa AA. Inq, a Modern GPU-Accelerated Computational Framework for (Time-Dependent) Density Functional Theory. J Chem Theory Comput 2021; 17:7447-7467. [PMID: 34726888 DOI: 10.1021/acs.jctc.1c00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present inq, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphic processing units (GPUs). Besides GPU support, inq makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12 000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures.
Collapse
Affiliation(s)
- Xavier Andrade
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Chaitanya Das Pemmaraju
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alexey Kartsev
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jun Xiao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aaron Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sangeeta Rajpurohit
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Alfredo A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| |
Collapse
|
10
|
Mokkath JH. Delocalized exciton formation in C60 linear molecular aggregates. Phys Chem Chem Phys 2021; 23:21901-21912. [PMID: 34558570 DOI: 10.1039/d1cp02430b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic semiconducting materials containing C60 molecules are efficient acceptors for planar perovskite solar cells. In this work, we theoretically investigate the optical and excitonic properties of C60 linear molecular aggregates (composed of 1 to 7 C60 molecules) via the real-time-propagation rt-TDDFT technique. In the case of a single C60 molecule, the photoabsorption peaks are dominated by localized molecular excitons. We furthermore demonstrate that, in the case of linear molecular aggregates, the photoabsorption peaks are contributed by localized molecular excitons, charge transfer excitons, and Wannier-like delocalized excitons. This result is different to the accepted theory that only localized molecular excitons or charge transfer excitons can be produced in organic semiconducting materials. This work provides additional insights into the exciton formation in C60 molecular aggregates and may help in the rational design of efficient solar cells.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
11
|
Lahav Y, Noy D, Schapiro I. Spectral tuning of chlorophylls in proteins - electrostatics vs. ring deformation. Phys Chem Chem Phys 2021; 23:6544-6551. [PMID: 33690760 DOI: 10.1039/d0cp06582j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In photosynthetic complexes, tuning of chlorophyll light-absorption spectra by the protein environment is crucial to their efficiency and robustness. Recombinant type II water soluble chlorophyll-binding proteins from Brassicaceae (WSCPs) are useful for studying spectral tuning mechanisms due to their symmetric homotetramer structure, and the ability to rigorously modify the chlorophyll's protein surroundings. Our previous comparison of the crystal structures of two WSCP homologues suggested that protein-induced chlorophyll ring deformation is the predominant spectral tuning mechanism. Here, we implement a more rigorous analysis based on hybrid quantum mechanics and molecular mechanics calculations to quantify the relative contributions of geometrical and electrostatic factors to the absorption spectra of WSCP-chlorophyll complexes. We show that when considering conformational dynamics, geometry distortions such as chlorophyll ring deformation accounts for about one-third of the spectral shift, whereas the direct polarization of the electron density accounts for the remaining two-thirds. From a practical perspective, protein electrostatics is easier to manipulate than chlorophyll conformations, thus, it may be more readily implemented in designing artificial protein-chlorophyll complexes.
Collapse
Affiliation(s)
- Yigal Lahav
- Fritz Haber Centre for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Israel.
| | | | | |
Collapse
|
12
|
Mokkath JH. I–V characteristics of an atomically thin graphene-boron nitride heterostructure. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Kehrer J, Richter R, Foerster JM, Schelter I, Kümmel S. Self-interaction correction, electrostatic, and structural influences on time-dependent density functional theory excitations of bacteriochlorophylls from the light-harvesting complex 2. J Chem Phys 2020; 153:144114. [PMID: 33086803 DOI: 10.1063/5.0014938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First-principles calculations offer the chance to obtain a microscopic understanding of light-harvesting processes. Time-dependent density functional theory can have the computational efficiency to allow for such calculations. However, the (semi-)local exchange-correlation approximations that are computationally most efficient fail to describe charge-transfer excitations reliably. We here investigate whether the inexpensive average density self-interaction correction (ADSIC) remedies the problem. For the systems that we study, ADSIC is even more prone to the charge-transfer problem than the local density approximation. We further explore the recently reported finding that the electrostatic potential associated with the chromophores' protein environment in the light-harvesting complex 2 beneficially shifts spurious excitations. We find a great sensitivity on the chromophores' atomistic structure in this problem. Geometries obtained from classical molecular dynamics are more strongly affected by the spurious charge-transfer problem than the ones obtained from crystallography or density functional theory. For crystal structure geometries and density-functional theory optimized ones, our calculations confirm that the electrostatic potential shifts the spurious excitations out of the energetic range that is most relevant for electronic coupling.
Collapse
Affiliation(s)
- Juliana Kehrer
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Rian Richter
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | - Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
14
|
Krumland J, Valencia AM, Pittalis S, Rozzi CA, Cocchi C. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules. J Chem Phys 2020; 153:054106. [PMID: 32770886 DOI: 10.1063/5.0008194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.
Collapse
Affiliation(s)
- Jannis Krumland
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | - Ana M Valencia
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | | | | | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| |
Collapse
|
15
|
Lyon K, Preciado-Rivas MR, Zamora-Ledezma C, Despoja V, Mowbray DJ. LCAO-TDDFT- k- ω: spectroscopy in the optical limit. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:415901. [PMID: 32503015 DOI: 10.1088/1361-648x/ab99ea] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Understanding, optimizing, and controlling the optical absorption process, exciton gemination, and electron-hole separation and conduction in low dimensional systems is a fundamental problem in materials science. However, robust and efficient methods capable of modelling the optical absorbance of low dimensional macromolecular systems and providing physical insight into the processes involved have remained elusive. We employ a highly efficient linear combination of atomic orbitals (LCAOs) representation of the Kohn-Sham (KS) orbitals within time dependent density functional theory (TDDFT) in the reciprocal space (k) and frequency (ω) domains, as implemented within our LCAO-TDDFT-k-ωcode, applying eithera prioriora posteriorithe derivative discontinuity correction of the exchange functional Δxto the KS eigenenergies as a scissors operator. In so doing we are able to provide a semi-quantitative description of the photoabsorption cross section, conductivity, and dielectric function for prototypical 0D, 1D, 2D, and 3D systems within the optical limit (‖q‖ → 0+) as compared to both available measurements and from solving the Bethe-Salpeter equation with quasiparticleG0W0eigenvalues (G0W0-BSE). Specifically, we consider 0D fullerene (C60), 1D metallic (10, 0) and semiconducting (10, 10) single-walled carbon nanotubes, 2D graphene (Gr) and phosphorene (Pn), and 3D rutile (R-TiO2) and anatase (A-TiO2). For each system, we also employ the spatially and energetically resolved electron-hole spectral density to provide direct physical insight into the nature of their optical excitations. These results demonstrate the reliability, applicability, efficiency, and robustness of our LCAO-TDDFT-k-ωcode, and open the pathway to the computational design of macromolecular systems for optoelectronic, photovoltaic, and photocatalytic applicationsin silico.
Collapse
Affiliation(s)
- Keenan Lyon
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - Camilo Zamora-Ledezma
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
- Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| | - Vito Despoja
- Institute of Physics, Bijenĭka 46, HR-10000 Zagreb, Croatia
| | - Duncan John Mowbray
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| |
Collapse
|
16
|
Takahashi T, Ogasawara S, Shinozaki Y, Tamiaki H. Synthesis of Cationic Pyridinium–Chlorin Conjugates with Various Counter Anions and Effects of the Anions on Their Photophysical Properties. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuya Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yoshinao Shinozaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Tancogne-Dejean N, Oliveira MJT, Andrade X, Appel H, Borca CH, Le Breton G, Buchholz F, Castro A, Corni S, Correa AA, De Giovannini U, Delgado A, Eich FG, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen AH, Lebedeva IV, Lüders M, Marques MAL, Ohlmann ST, Pipolo S, Rampp M, Rozzi CA, Strubbe DA, Sato SA, Schäfer C, Theophilou I, Welden A, Rubio A. Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. J Chem Phys 2020; 152:124119. [PMID: 32241132 DOI: 10.1063/1.5142502] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials).
Collapse
Affiliation(s)
- Nicolas Tancogne-Dejean
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Micael J T Oliveira
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Xavier Andrade
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Heiko Appel
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Carlos H Borca
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Guillaume Le Breton
- Département de Physique, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, France
| | - Florian Buchholz
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alberto Castro
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Alfredo A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Umberto De Giovannini
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alain Delgado
- Xanadu, 777 Bay Street, Toronto, Ontario M5G 2C8, Canada
| | - Florian G Eich
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Johannes Flick
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gabriel Gil
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Adrián Gomez
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Calle Mariano Esquillor, 50018 Zaragoza, Spain
| | - Nicole Helbig
- Nanomat/Qmat/CESAM and ETSF, Université de Liège, B-4000 Sart-Tilman, Belgium
| | - Hannes Hübener
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - René Jestädt
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Joaquim Jornet-Somoza
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Ask H Larsen
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - Irina V Lebedeva
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, 20018 San Sebastián, Spain
| | - Martin Lüders
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Miguel A L Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Sebastian T Ohlmann
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany
| | - Silvio Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d' Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Markus Rampp
- Max Planck Computing and Data Facility, Gießenbachstraße 2, 85741 Garching, Germany
| | - Carlo A Rozzi
- CNR - Istituto Nanoscienze, via Campi 213a, 41125 Modena, Italy
| | - David A Strubbe
- Department of Physics, School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Shunsuke A Sato
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Iris Theophilou
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | - Alicia Welden
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| |
Collapse
|
18
|
Shao Y, Mei Y, Sundholm D, Kaila VRI. Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. J Chem Theory Comput 2020; 16:587-600. [PMID: 31815476 PMCID: PMC7391796 DOI: 10.1021/acs.jctc.9b00823] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantum chemical calculations are important for elucidating light-capturing mechanisms in photobiological systems. The time-dependent density functional theory (TDDFT) has become a popular methodology because of its balance between accuracy and computational scaling, despite its problems in describing, for example, charge transfer states. As a step toward systematically understanding the performance of TDDFT calculations on biomolecular systems, we study here 17 commonly used density functionals, including seven long-range separated functionals, and compare the obtained results with excitation energies calculated at the approximate second order coupled-cluster theory level (CC2). The benchmarking set includes the first five singlet excited states of 11 chemical analogues of biochromophores from the green fluorescent protein, rhodopsin/bacteriorhodopsin (Rh/bR), and the photoactive yellow protein. We find that commonly used pure density functionals such as BP86, PBE, M11-L, and hybrid functionals with 20-25% of Hartree-Fock (HF) exchange (B3LYP, PBE0) have a tendency to consistently underestimate vertical excitation energies (VEEs) relative to the CC2 values, whereas hybrid density functionals with around 50% HF exchange such as BHLYP, PBE50, and M06-2X and long-range corrected functionals such as CAM-B3LYP, ωPBE, ωPBEh, ωB97X, ωB97XD, BNL, and M11 overestimate the VEEs. We observe that calculations using the CAM-B3LYP and ωPBEh functionals with 65% and 100% long-range HF exchange, respectively, lead to an overestimation of the VEEs by 0.2-0.3 eV for the benchmarking set. To reduce the systematic error, we introduce here two new empirical functionals, CAMh-B3LYP and ωhPBE0, for which we adjusted the long-range HF exchange to 50%. The introduced parameterization reduces the mean signed average (MSA) deviation to 0.07 eV and the root mean square (rms) deviation to 0.17 eV as compared to the CC2 values. In the present study, TDDFT calculations using the aug-def2-TZVP basis sets, the best performing functionals relative to CC2 are ωhPBE0 (rms = 0.17, MSA = 0.06 eV); CAMh-B3LYP (rms = 0.16, MSA = 0.07 eV); and PBE0 (rms = 0.23, MSA = -0.14 eV). For the popular range-separated CAM-B3LYP functional, we obtain an rms value of 0.31 eV and an MSA value of 0.25 eV, which can be compared with the rms and MSA values of 0.37 and -0.31 eV, respectively, as obtained at the B3LYP level.
Collapse
Affiliation(s)
- Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science , East China Normal University , Shanghai 200062 , China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062 , China
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science , University of Helsinki , P.O. Box 55, Helsinki FIN-00014 , Finland
| | - Ville R I Kaila
- Department Chemie , Technische Universität München (TUM) , Lichtenbergstrasse 4 , Garching D-85747 , Germany
- Department of Biochemistry and Biophysics , Stockholm University , Stockholm SE-10691 , Sweden
| |
Collapse
|
19
|
Mokkath JH. Localized surface plasmon resonances of a metal nanoring. Phys Chem Chem Phys 2020; 22:23878-23885. [DOI: 10.1039/d0cp04216a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the linear combination of atomic orbitals real-time-propagation rt-TDDFT technique and transition contribution maps, we study the optical and plasmonic features of a metal nanoring made up of sodium atoms.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab
- Department of Physics
- Kuwait College of Science and Technology
- Kuwait
| |
Collapse
|
20
|
Preciado-Rivas MR, Mowbray DJ, Lyon K, Larsen AH, Milne BF. Optical excitations of chlorophyll a and b monomers and dimers. J Chem Phys 2019; 151:174102. [PMID: 31703510 DOI: 10.1063/1.5121721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A necessary first step in the development of technologies such as artificial photosynthesis is understanding the photoexcitation process within the basic building blocks of naturally occurring light harvesting complexes (LHCs). The most important of these building blocks in biological LHCs such as LHC II from green plants are the chlorophyll a (Chl a) and chlorophyll b (Chl b) chromophores dispersed throughout the protein matrix. However, efforts to describe such systems are still hampered by the lack of computationally efficient and accurate methods that are able to describe optical absorption in large biomolecules. In this work, we employ a highly efficient linear combination of atomic orbitals (LCAOs) to represent the Kohn-Sham (KS) wave functions at the density functional theory (DFT) level and perform time-dependent density functional theory (TDDFT) calculations in either the reciprocal space and frequency domain (LCAO-TDDFT-k-ω) or real space and time domain (LCAO-TDDFT-r-t) of the optical absorption spectra of Chl a and b monomers and dimers. We find that our LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t calculations reproduce results obtained with a plane-wave (PW) representation of the KS wave functions (PW-TDDFT-k-ω) but with a significant reduction in computational effort. Moreover, by applying the Gritsenko, van Leeuwen, van Lenthe, and Baerends solid and correlation derivative discontinuity correction Δx to the KS eigenenergies, with both LCAO-TDDFT-k-ω and LCAO-TDDFT-r-t methods, we are able to semiquantitatively reproduce the experimentally measured photoinduced dissociation results. This work opens the path to first principles calculations of optical excitations in macromolecular systems.
Collapse
Affiliation(s)
| | - Duncan John Mowbray
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Keenan Lyon
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ask Hjorth Larsen
- Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, E-20018 San Sebastián, Spain
| | - Bruce Forbes Milne
- Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, E-20018 San Sebastián, Spain
| |
Collapse
|
21
|
Schelter I, Foerster JM, Gardiner AT, Roszak AW, Cogdell RJ, Ullmann GM, de Queiroz TB, Kümmel S. Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2. J Chem Phys 2019; 151:134114. [DOI: 10.1063/1.5116779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| | - Johannes M. Foerster
- Theoretical Physics IV and Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Aleksander W. Roszak
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
22
|
Jornet-Somoza J, Lebedeva I. Real-Time Propagation TDDFT and Density Analysis for Exciton Coupling Calculations in Large Systems. J Chem Theory Comput 2019; 15:3743-3754. [PMID: 31091099 PMCID: PMC6562740 DOI: 10.1021/acs.jctc.9b00209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Photoactive
systems are characterized by their capacity to absorb
the energy of light and transform it. Usually, more than one chromophore
is involved in the light absorption and excitation transport processes
in complex systems. Linear-Response Time-Dependent Density Functional
(LR-TDDFT) is commonly used to identify excitation energies and transition
properties by solving the well-known Casida’s equation for
single molecules. However, in practice, LR-TDDFT presents some disadvantages
when dealing with multichromophore systems due to the increasing size
of the electron–hole pairwise basis required for accurate evaluation
of the absorption spectrum. In this work, we extend our local density
decomposition method that enables us to disentangle individual contributions
into the absorption spectrum to computation of exciton dynamic properties,
such as exciton coupling parameters. We derive an analytical expression
for the transition density from Real-Time Propagation TDDFT (P-TDDFT)
based on Linear Response theorems. We demonstrate the validity of
our method to determine transition dipole moments, transition densities,
and exciton coupling for systems of increasing complexity. We start
from the isolated benzaldehyde molecule, perform a distance analysis
for π-stacked dimers, and finally map the exciton coupling for
a 14 benzaldehyde cluster.
Collapse
Affiliation(s)
- Joaquim Jornet-Somoza
- Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Department of Materials Physics , University of the Basque Country, CFM CSIC-UPV/EHU-MPC and DIPC , Tolosa Hiribidea 72 , E-20018 Donostia-San Sebastián , Spain.,Theory Department , Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Irina Lebedeva
- Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Department of Materials Physics , University of the Basque Country, CFM CSIC-UPV/EHU-MPC and DIPC , Tolosa Hiribidea 72 , E-20018 Donostia-San Sebastián , Spain
| |
Collapse
|
23
|
Jia W, An D, Wang LW, Lin L. Fast Real-Time Time-Dependent Density Functional Theory Calculations with the Parallel Transport Gauge. J Chem Theory Comput 2018; 14:5645-5652. [DOI: 10.1021/acs.jctc.8b00580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weile Jia
- Department of Mathematics, University of California, Berkeley, California 94720, United States
| | - Dong An
- Department of Mathematics, University of California, Berkeley, California 94720, United States
| | - Lin-Wang Wang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lin Lin
- Department of Mathematics, University of California, Berkeley, California 94720, United States
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Schelter I, Kümmel S. Accurate Evaluation of Real-Time Density Functional Theory Providing Access to Challenging Electron Dynamics. J Chem Theory Comput 2018; 14:1910-1927. [DOI: 10.1021/acs.jctc.7b01013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ingo Schelter
- Department of Physics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stephan Kümmel
- Department of Physics, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
25
|
A pathway for protective quenching in antenna proteins of Photosystem II. Sci Rep 2017; 7:2523. [PMID: 28566748 PMCID: PMC5451436 DOI: 10.1038/s41598-017-02892-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/19/2017] [Indexed: 11/08/2022] Open
Abstract
Photosynthesis is common in nature, converting sunlight energy into proton motive force and reducing power. The increased spectral range absorption of light exerted by pigments (i.e. chlorophylls, Chls) within Light Harvesting Complexes (LHCs) proves an important advantage under low light conditions. However, in the exposure to excess light, oxidative damages and ultimately cell death can occur. A down-regulatory mechanism, thus, has been evolved (non-photochemical quenching, NPQ). The mechanistic details of its major component (qE) are missing at the atomic scale. The research herein, initiates on solid evidence from the current NPQ state of the art, and reveals a detailed atomistic view by large scale Molecular Dynamics, Metadynamics and ab initio Simulations. The results demonstrate a complete picture of an elaborate common molecular design. All probed antenna proteins (major LHCII from spinach-pea, CP29 from spinach) show striking plasticity in helix-D, under NPQ conditions. This induces changes in Qy bands in excitation and absorption spectra of the near-by pigment pair (Chl613-614) that could emerge as a new quenching site. Zeaxanthin enhances this plasticity (and possibly the quenching) even at milder NPQ conditions.
Collapse
|
26
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
27
|
Cole DJ, Hine NDM. Applications of large-scale density functional theory in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:393001. [PMID: 27494095 DOI: 10.1088/0953-8984/28/39/393001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Collapse
Affiliation(s)
- Daniel J Cole
- Theory of Condensed Matter group, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK. School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
28
|
Maitra NT. Perspective: Fundamental aspects of time-dependent density functional theory. J Chem Phys 2016; 144:220901. [DOI: 10.1063/1.4953039] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Neepa T. Maitra
- Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065, USA
| |
Collapse
|
29
|
Nguyen TS, Koh JH, Lefelhocz S, Parkhill J. Black-Box, Real-Time Simulations of Transient Absorption Spectroscopy. J Phys Chem Lett 2016; 7:1590-1595. [PMID: 27064028 DOI: 10.1021/acs.jpclett.6b00421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP-chromophore derivative. The method is an application of OSCF2, our dissipative extension of time-dependent density functional theory. We compare our simulated spectra directly with recent ultrafast spectroscopic experiments. We identify features in the TA spectra to Pauli-blocking, which may be missed without a first-principles model. An important ingredient in this method is the stationary-TDDFT correction scheme recently put forward by Fischer, Govind, and Cramer that allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to reproduce the energies of bleaches and induced absorptions as well as the decay of the transient spectrum with only the molecular structure as input.
Collapse
Affiliation(s)
- Triet S Nguyen
- Department of Chemistry and Biochemistry, The University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Joong Hoon Koh
- Department of Chemistry and Biochemistry, The University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Susan Lefelhocz
- Department of Chemistry and Biochemistry, The University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - John Parkhill
- Department of Chemistry and Biochemistry, The University of Notre Dame , 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Milne BF, Kjaer C, Houmøller J, Stockett MH, Toker Y, Rubio A, Nielsen SB. On the Exciton Coupling between Two Chlorophyll Pigments in the Absence of a Protein Environment: Intrinsic Effects Revealed by Theory and Experiment. Angew Chem Int Ed Engl 2016; 55:6248-51. [DOI: 10.1002/anie.201601979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Bruce F. Milne
- CFisUC, Department of Physics; University of Coimbra; Rua Larga 3004-516 Coimbra Portugal
| | - Christina Kjaer
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Jørgen Houmøller
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Mark H. Stockett
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Yoni Toker
- Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter; Luruper Chaussee 149 22761 Hamburg Germany
- Nano-Bio Spectroscopy Group and ETSF; Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPC; 20018 San Sebastián Spain
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| |
Collapse
|
31
|
Milne BF, Kjaer C, Houmøller J, Stockett MH, Toker Y, Rubio A, Nielsen SB. On the Exciton Coupling between Two Chlorophyll Pigments in the Absence of a Protein Environment: Intrinsic Effects Revealed by Theory and Experiment. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bruce F. Milne
- CFisUC, Department of Physics; University of Coimbra; Rua Larga 3004-516 Coimbra Portugal
| | - Christina Kjaer
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Jørgen Houmøller
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Mark H. Stockett
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| | - Yoni Toker
- Institute of Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter; Luruper Chaussee 149 22761 Hamburg Germany
- Nano-Bio Spectroscopy Group and ETSF; Universidad del País Vasco, CFM CSIC-UPV/EHU-MPC & DIPC; 20018 San Sebastián Spain
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy; Aarhus University; Ny Munkegade DK-8000 Aarhus C Denmark
| |
Collapse
|
32
|
de Visser SP, Stillman MJ. Challenging Density Functional Theory Calculations with Hemes and Porphyrins. Int J Mol Sci 2016; 17:519. [PMID: 27070578 PMCID: PMC4848975 DOI: 10.3390/ijms17040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|