1
|
Kubiak A, Kubacka M, Gabała E, Dobrowolska A, Synoradzki K, Siwińska-Ciesielczyk K, Czaczyk K, Jesionowski T. Hydrothermally Assisted Fabrication of TiO 2-Fe 3O 4 Composite Materials and Their Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4715. [PMID: 33105776 PMCID: PMC7660073 DOI: 10.3390/ma13214715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023]
Abstract
The TiO2-Fe3O4 composite materials were fabricated via the hydrothermal-assisted technique. It was determined how the molar ratio of TiO2 to Fe3O4 influences the crystalline structure and morphology of the synthesized composite materials. The effect of the molar ratio of components on the antibacterial activity was also analyzed. On the basis of XRD patterns for the obtained titanium(IV) oxide-iron(II, III) oxide composites, the two separate crystalline forms-anatase and magnetite -were observed. Transmission electron microscopy revealed particles of cubic and tetragonal shape for TiO2 and spherical for Fe3O4. The results of low-temperature nitrogen sorption analysis indicated that an increase in the iron(II, III) oxide content leads to a decrease in the BET surface area. Moreover, the superparamagnetic properties of titanium(IV) oxide-iron(II, III) oxide composites should be noted. An important aim of the work was to determine the antibacterial activity of selected TiO2-Fe3O4 materials. For this purpose, two representative strains of bacteria, the Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, were used. The titanium(IV) oxide-iron(II, III) oxide composites demonstrated a large zone of growth inhibition for both Gram-positive and Gram-negative bacteria. Moreover, it was found that the analyzed materials can be reused as antibacterial agents in three consecutive cycles with good results.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Marta Kubacka
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Elżbieta Gabała
- National Research Institute, Institute of Plant Protection, Węgorka 20, PL-60318 Poznan, Poland;
| | - Anna Dobrowolska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60637 Poznan, Poland; (A.D.); (K.C.)
| | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, PL-60179 Poznan, Poland;
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, PL-50422 Wrocław, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, PL-60637 Poznan, Poland; (A.D.); (K.C.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; (A.K.); (M.K.); (K.S.-C.)
| |
Collapse
|
2
|
|
3
|
Preparation of N-functionalized TiO 2 particles using one-step sol–gel method and their photocatalytic activity. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|