1
|
Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. NANOSCALE 2022; 14:2943-2965. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanodroplets - emerging phase-changing sonoresponsive materials - have attracted substantial attention in biomedical applications for both tumour imaging and therapeutic purposes due to their unique response to ultrasound. As ultrasound is applied at different frequencies and powers, nanodroplets have been shown to cavitate by the process of acoustic droplet vapourisation (ADV), causing the development of mechanical forces which promote sonoporation through cellular membranes. This allows drugs to be delivered efficiently into deeper tissues where tumours are located. Recent reviews on nanodroplets are mostly focused on the mechanism of cavitation and their applications in biomedical fields. However, the chemistry of the nanodroplet components has not been discussed or reviewed yet. In this review, the commonly used materials and preparation methods of nanodroplets are summarised. More importantly, this review provides examples of variable chemistry components in nanodroplets which link them to their efficiency as ultrasound-multimodal imaging agents to image and monitor drug delivery. Finally, the drawbacks of current research, future development, and future direction of nanodroplets are discussed.
Collapse
Affiliation(s)
- Weiqi Zhang
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Yuhong Shi
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | | | | | - Stavros Vlatakis
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
2
|
Somaglino L, Mousnier L, Giron A, Urbach W, Tsapis N, Taulier N. In vitro evaluation of polymeric nanoparticles with a fluorine core for drug delivery triggered by focused ultrasound. Colloids Surf B Biointerfaces 2021; 200:111561. [PMID: 33465555 DOI: 10.1016/j.colsurfb.2021.111561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/06/2020] [Accepted: 01/02/2021] [Indexed: 11/25/2022]
Abstract
Polymeric nanoparticles are being intensively investigated as drug carriers. Their efficiency could be enhanced if the drug release can be triggered using an external stimulus such as ultrasound. This approach is possible using current commercial apparatus that combine focused ultrasound with MRI to perform ultrasonic surgery. In this approach, nanoparticles made of a perfluoro-octyl bromide core and a thick polymeric (PLGA-PEG) shell may represent suitable drug carriers. Indeed, their perfluorocarbon core are detectable by 19F MRI, while their polymeric shell can encapsulate drugs. However, their applicability in ultrasound-triggered drug delivery remains to be proven. To do so, we used Nile red as a model drug and we measured its release from the polymeric shell by spectrofluorometry. In the absence of ultrasound, only a small amount of Nile red release was measured (<5%). Insonations were performed in a controlled environment using a 1.1 MHz transducer emitting tone bursts for a few minutes, whereas a focused broadband hydrophone was used to detect the occurrence of cavitation. In the absence of detectable inertial cavitation, less than 5% of Nile red was released. In the presence of detectable inertial cavitation, Nile red release was ranging from 10% to 100%, depending of the duty cycle, acoustic pressure, and tank temperature (25 or 37 °C). Highest releases were obtained only for duty cycles of 25% at 37 °C and 50% at 25 °C and for a peak-to-peak acoustic pressure above 12.7 MPa. Electron microscopy and light scattering measurements showed a slight modification in the nanoparticle morphology only at high release contents. The occurrence of strong inertial cavitation is thus a prerequisite to induce drug release for these nanoparticles. Since strong inertial cavitation can lead to many unwanted biological effects, these nanoparticles may not be suitable for a therapeutic application using ultrasound-triggered drug delivery.
Collapse
Affiliation(s)
- L Somaglino
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France; IFREMER, La Seyne-sur-Mer, France
| | - L Mousnier
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - A Giron
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| | - W Urbach
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France; Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - N Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - N Taulier
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France.
| |
Collapse
|
3
|
Pannuzzo M, Horta BAC, La Rosa C, Decuzzi P. Predicting the Miscibility and Rigidity of Poly(lactic- co-glycolic acid)/Polyethylene Glycol Blends via Molecular Dynamics Simulations. Macromolecules 2020; 53:3643-3654. [PMID: 32831403 PMCID: PMC7428138 DOI: 10.1021/acs.macromol.0c00110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Indexed: 11/30/2022]
Abstract
![]()
The
addition of polyethylene glycol (PEG) chains to poly(lactic-co-glycolic acid) (PLGA) matrices is extensively used to
modulate the biodegradation, drug loading and release, mechanical
properties, and chemical stability of the original system. Multiple
parameters, including the molecular weight, relative concentration,
polarity, and solubility, affect the physicochemical properties of
the polymer blend. Here, molecular dynamics simulations with the united-atom
2016H66 force field are used to model the behavior of PLGA and PEG chains and thus predict the overall
physicochemical features of the resulting blend. First, the model
accuracy is validated against fundamental properties of pure PLGA
and PEG samples. In agreement with previous experimental and theoretical
observations, the PLGA solubility results to be higher in acetonitrile
than in water, with Flory parameters νACN = 0.63
± 0.01 and νW = 0.21 ± 0.02, and the Young’s
modulus of PLGA and PEG equal to Y = 2.0 ± 0.43
and 0.32 ± 0.34 GPa, respectively. Next, four PEG/PLGA blending
regimes are identified by varying the relative concentrations and
molecular weights of the individual polymers. The computational results
demonstrate that at low PEG concentrations (<8% w/w), homogeneous
blends are generated for both low and high PEG molecular weights.
In contrast, at comparable PEG and PLGA concentrations (∼50%
w/w), short PEG chains are only partially miscible whereas long PEG
chains segregate within the PLGA matrix. This behavior has been confirmed
experimentally via differential scanning calorimetry and is in agreement
with previous observations. Finally, the computed Young’s modulus
of PLGA/PEG blends is observed to decrease with the PEG content returning
the lowest values for the partial and fully segregated regimens (Y ≈ 1.3 GPa). This work proposes a computational
scheme for predicting the physicochemical properties of PLGA/PEG blends
paving the way toward the rational design of polymer mixtures for
biomedical applications.
Collapse
Affiliation(s)
- Martina Pannuzzo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Bruno A C Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carmelo La Rosa
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
4
|
Thin-Shelled PEGylated Perfluorooctyl Bromide Nanocapsules for Tumor-Targeted Ultrasound Contrast Agent. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1725323. [PMID: 30515065 PMCID: PMC6236697 DOI: 10.1155/2018/1725323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022]
Abstract
Shell thickness determines the acoustic response of polymer-based perfluorooctyl bromide (PFOB) nanocapsule ultrasound contrast agents. PEGylation provides stealth property and arms for targeting moieties. We investigated a modulation in the polymer formulation of carboxy-terminated poly(d,l-lactide-co-glycolide) (PLGA) and poly(d,l-lactide-co-glycolide)-block-polyethylene glycol (PLGA-b-PEG) to produce thin-shelled PFOB nanocapsules while keeping its echogenicity, stealth property, and active targeting potential. Polymer formulation contains 40% PLGA-PEG that yields the PEGylated PFOB nanocapsules of approximately 150 nm size with average thickness-to-radius ratio down to 0.15, which adequately hindered phagocytosis. Functionalization with antibody enables in vitro tumor-specific targeting. Despite the acoustic response improvement, the in vivo tumor accumulation was inadequate to generate an observable acoustic response to the ultrasound power at the clinical level. The use of PLGA and PLGA-PEG polymer blend allows the production of thin-shelled PFOB nanocapsules with echogenicity improvement while maintaining its potential for specific targeting.
Collapse
|
5
|
Lacour T, Guédra M, Valier-Brasier T, Coulouvrat F. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:23. [PMID: 29390781 DOI: 10.1121/1.5019467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.
Collapse
Affiliation(s)
- Thomas Lacour
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - Matthieu Guédra
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - Tony Valier-Brasier
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| | - François Coulouvrat
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond ∂'Alembert, F-75005 Paris, France
| |
Collapse
|
6
|
Echogenicity enhancement by end-fluorinated polylactide perfluorohexane nanocapsules: Towards ultrasound-activable nanosystems. Acta Biomater 2017; 64:313-322. [PMID: 28986300 DOI: 10.1016/j.actbio.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022]
Abstract
Polylactide (PLA) polymers containing five distinct lengths of fluorinated (from C3F7 to C13F27) and non-fluorinated (C6H13) end-groups were successfully synthesized by ring-opening polymerization of d,l-lactide. Fluorination was expected to increase the encapsulation efficiency of perfluorohexane (PFH). 150 nm nanocapsules were obtained and 19F nuclear magnetic resonance revealed that nanocapsules formulated with fluorinated polymers increased by 2-fold the encapsulation efficiency of PFH compared with non-fluorinated derivatives, without any effect of fluorine chain length. Fluorination of the polymers did not induce any specific in vitro cytotoxicity of nanocapsules towards HUVEC and J774.A1 cell lines. The echogenicity of fluorinated-shelled nanocapsules was increased by 3-fold to 40-fold compared to non-fluorinated nanocapsules or nanoparticles devoid of a perfluorohexane core for both conventional and contrast-specific ultrasound imaging modalities. In particular, an enhanced echogenicity and contrast-specific response was observed as the fluorinated chain-length increased, probably due to an increase of density and promotion of bubble nucleation. When submitted to focused ultrasound, both intact and exploded nanocapsules could be observed, also with end-group dependency, indicating that PFH was partly vaporized. These results pave the way to the design of theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound. STATEMENT OF SIGNIFICANCE We have synthesized novel fluorinated polyesters and formulated them into nanocapsules of perfluorohexane as ultrasound contrast agents. This nanosystem has been thoroughly characterized by several techniques and we show that fluorination of the biodegradable polymer favors the encapsulation of perfluorohexane without producing further reduction of cell viability. Contrary to nanocapsules of perfluoroctyl bromide formulated with the fluorinated polymers [32], the presence of the fluorinated moieties leads to an increase of echogenicity that is dependent of the length of the fluorinated moiety. Morevover, the ability of nanocapsules to explode when submitted to focused ultrasound also depends on the length of the fluorinated chain. These results pave the way to theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound.
Collapse
|
7
|
Houvenagel S, Picheth G, Dejean C, Brûlet A, Chennevière A, Couture O, Huang N, Moine L, Tsapis N. End-chain fluorination of polyesters favors perfluorooctyl bromide encapsulation into echogenic PEGylated nanocapsules. Polym Chem 2017. [DOI: 10.1039/c7py00400a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorination of polyesters favors the encapsulation efficiency of perfluorooctyl bromide into nanocapsules.
Collapse
Affiliation(s)
- Sophie Houvenagel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Guilherme Picheth
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Camille Dejean
- BioCIS
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Annie Brûlet
- Laboratoire Léon Brillouin
- UMR12 CEA-CNRS
- CEA Saclay
- Gif sur Yvette
- France
| | | | - Olivier Couture
- Institut Langevin
- ESPCI Paris
- CNRS (UMR 7587)
- INSERM (U979)
- Paris
| | - Nicolas Huang
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Laurence Moine
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Nicolas Tsapis
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|