1
|
Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:180-212. [PMID: 32082960 PMCID: PMC7006492 DOI: 10.3762/bjnano.11.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy is a technique already used in ophthalmology or oncology. It is based on the local production of reactive oxygen species through an energy transfer from an excited photosensitizer to oxygen present in the biological tissue. This review first presents an update, mainly covering the last five years, regarding the block copolymers used as nanovectors for the delivery of the photosensitizer. In particular, we describe the chemical nature and structure of the block copolymers showing a very large range of existing systems, spanning from natural polymers such as proteins or polysaccharides to synthetic ones such as polyesters or polyacrylates. A second part focuses on important parameters for their design and the improvement of their efficiency. Finally, particular attention has been paid to the question of nanocarrier internalization and interaction with membranes (both biomimetic and cellular), and the importance of intracellular targeting has been addressed.
Collapse
Affiliation(s)
- Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
2
|
Farokhirad S, Bradley RP, Radhakrishnan R. Thermodynamic analysis of multivalent binding of functionalized nanoparticles to membrane surface reveals the importance of membrane entropy and nanoparticle entropy in adhesion of flexible nanoparticles. SOFT MATTER 2019; 15:9271-9286. [PMID: 31670338 PMCID: PMC6868310 DOI: 10.1039/c9sm01653h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a quantitative model for multivalent binding of ligand-coated flexible polymeric nanoparticles (NPs) to a flexible membrane expressing receptors. The model is developed using a multiscale computational framework by coupling a continuum field model for the cell membrane with a coarse-grained model for the polymeric NPs. The NP is modeled as a self-avoiding bead-spring polymer chain, and the cell membrane is modeled as a triangulated surface using the dynamically triangulated Monte Carlo method. The nanoparticle binding affinity to a cell surface is mainly determined by the delicate balance between the enthalpic gain due to the multivalent ligand-receptor binding and the entropic penalties of various components including receptor translation, membrane undulation, and NP conformation. We have developed new methods to compute the free energy of binding, which includes these enthalpy and entropy terms. We show that the multivalent interactions between the flexible NP and the cell surface are subject to entropy-enthalpy compensation. Three different entropy contributions, namely, those due to receptor-ligand translation, NP flexibility, and membrane undulations, are all significant, although the first of these terms is the most dominant. However, both NP flexibility and membrane undulations dictate the receptor-ligand translational entropy making the entropy compensation context-specific, i.e., dependent on whether the NP is rigid or flexible, and on the state of the membrane given by the value of membrane tension or its excess area.
Collapse
Affiliation(s)
- Samaneh Farokhirad
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Ryan P Bradley
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Shen Z, Ye H, Kröger M, Tang S, Li Y. Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles. NANOSCALE 2019; 11:15971-15983. [PMID: 31424067 DOI: 10.1039/c9nr02408e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore the cellular uptake process of PEGylated liposomes and bicelles by investigating their membrane wrapping process using large-scale molecular dynamics simulations. We find that due to the mobility of ligands on the liposome/bicelle, the membrane wrapping process of a PEGylated liposome/bicelle can be divided into two stages, whose transition is determined by a critical wrapping fraction fc; it is reached when all the ligands are exhausted and bound to receptors within the cell membrane. Before this critical scenario is approached, the grafted polyethylene glycol (PEG) polymers aggregate together within the membrane-wrapped region of the liposome/bicelle, driven by ligand-receptor binding. For wrapping fractions f > fc, membrane wrapping cannot proceed unless a compressive membrane tension is provided. By systematically varying the membrane tension and PEG molar ratio, we establish phase diagrams about wrapping states for both PEGylated liposomes and bicelles. According to these diagrams, we find that the absolute value of the compressive membrane tension required by a fully wrapped PEGylated bicelle is smaller than that of the PEGylated liposome, indicating that the PEGylated bicelle is easily internalized by cells. Further theoretical analysis reveals that compared to a liposome, the flatter surface at the top of a bicelle makes it energetically more favored beyond the critical wrapping fraction fc. Our simulations confirm that the interplay between ligand mobility and NP geometry can significantly change the understanding about the influence of NP geometry on the membrane wrapping process. It can help us to better understand the cellular uptake process of the PEGylated liposome/bicelle and to improve the design of lipid-like NPs for drug delivery.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
4
|
Liu Y, Li S, Liu X, Sun H, Yue T, Zhang X, Yan B, Cao D. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23822-23831. [PMID: 31250627 DOI: 10.1021/acsami.9b03638] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Design of nanoparticles (NPs) for biomedical applications requires a thorough understanding of cascades of nano-bio interactions at different interfaces. Here, we take into account the cascading effect of NP functionalization on interactions with target cell membranes by determining coatings of biomolecules in biological media. Cell culture experiments show that NPs with more hydrophobic surfaces are heavily ingested by cells in both the A549 and HEK293 cell lines. However, before reaching the target cell, both the identity and amount of recruited biomolecules can be influenced by the pristine NPs' hydrophobicity. Dissipative particle dynamics (DPD) simulations show that hydrophobic NPs acquire coatings of more biomolecules, which may conceal the properties of the as-engineered NPs and impact the targeting specificity. Based on these results, we propose an amphiphilic ligand coating on NPs. DPD simulations reveal the design principle, following which the amphiphilic ligands first curl in solvent to reduce the surface hydrophobicity, thus suppressing the assemblage of biomolecules. Upon attaching to the membrane, the curled ligands extend and rearrange to gain contacts with lipid tails, thus dragging NPs into the membrane for translocation. Three NP-membrane interaction states are identified that are found to depend on the NP size and membrane surface tension. These results can provide useful guidelines to fabricate ligand-coated NPs for practical use in targeted drug delivery, and motivate further studies of nano-bio-interactions with more consideration of cascading effects.
Collapse
Affiliation(s)
- Yuchi Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shixin Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Hainan Sun
- School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay , Guangzhou University , Guangzhou 510006 , China
- School of Environmental Science and Engineering , Shandong University , Jinan 250100 , China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
5
|
Köksal ES, Liese S, Kantarci I, Olsson R, Carlson A, Gözen I. Nanotube-Mediated Path to Protocell Formation. ACS NANO 2019; 13:6867-6878. [PMID: 31177769 DOI: 10.1021/acsnano.9b01646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular compartments are membrane-enclosed, spatially distinct microenvironments that confine and protect biochemical reactions in the biological cell. On the early Earth, the autonomous formation of compartments is thought to have led to the encapsulation of nucleotides, thereby satisfying a starting condition for the emergence of life. Recently, surfaces have come into focus as potential platforms for the self-assembly of prebiotic compartments, as significantly enhanced vesicle formation was reported in the presence of solid interfaces. The detailed mechanism of such formation at the mesoscale is still under discussion. We report here on the spontaneous transformation of solid-surface-adhered lipid deposits to unilamellar membrane compartments through a straightforward sequence of topological changes, proceeding via a network of interconnected lipid nanotubes. We show that this transformation is entirely driven by surface-free energy minimization and does not require hydrolysis of organic molecules or external stimuli such as electrical currents or mechanical agitation. The vesicular structures take up and encapsulate their external environment during formation and can subsequently separate and migrate upon exposure to hydrodynamic flow. This may link the self-directed transition from weakly organized bioamphiphile assemblies on solid surfaces to protocells with secluded internal contents.
Collapse
Affiliation(s)
- Elif S Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , 0318 Oslo , Norway
| | - Susanne Liese
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , University of Oslo , 0315 Oslo , Norway
| | - Ilayda Kantarci
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , 0318 Oslo , Norway
| | - Ragni Olsson
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , 0318 Oslo , Norway
| | - Andreas Carlson
- Department of Chemistry, Faculty of Mathematics and Natural Sciences , University of Oslo , 0315 Oslo , Norway
| | - Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine , University of Oslo , 0318 Oslo , Norway
- Department of Mathematics, Faculty of Mathematics and Natural Sciences , University of Oslo , 0315 Oslo , Norway
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE-412 96 Göteborg , Sweden
| |
Collapse
|
6
|
Li S, Yan Z, Luo Z, Xu Y, Huang F, Hu G, Zhang X, Yue T. Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5333-5341. [PMID: 30908057 DOI: 10.1021/acs.langmuir.9b00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical heterogeneity is ubiquitous in plasma membranes and of essential importance to cellular functioning. As a feedback of mechanical stimuli, local surface tension can be readily changed and immediately propagated through the membrane, influencing structures and dynamics of both inclusions and membrane-associated proteins. Using the nonequilibrium coarse-grained membrane simulation, here we investigate the inter-related processes of tension propagation, lipid diffusion, and transport of nanoparticles (NPs) adhering on the membrane of constant tension gradient, mimicking that of migrating cells or cells under prolonged stimulation. Our results demonstrate that the lipid bilayer membrane can by itself propagate surface tension in defined rates and pathways to reach a dynamic equilibrium state where surface tension is linearly distributed along the gradient maintained by the directional flow-like motion of lipids. Such lipid flow exerts shearing forces to transport adhesive NPs toward the region of a larger surface tension. Under certain conditions, the shearing force can generate nonzero torques driving the rotational motion of NPs, with the direction of the NP rotation determined by the NP-membrane interaction state as functions of both NP property and local membrane surface tension. Such features endow NPs with promising applications ranging from biosensing to targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Hu
- State Key Laboratory of Nonlinear Mechanics (LNM) , Institute of Mechanics, Chinese Academy of Science , Beijing 100190 , China
- School of Engineering Science , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | | |
Collapse
|
7
|
Tang H, Ye H, Zhang H, Zheng Y. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system. NANOTECHNOLOGY 2018; 29:405102. [PMID: 30020084 DOI: 10.1088/1361-6528/aad443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aggregation of nanoparticles (NPs) on the cell membrane is crucial for the cellular uptake process and has important biological implications in protein-membrane interactions. In this paper, we systematically investigate how the aggregation is regulated by the mechanical properties of the NP-membrane system, including the membrane tension, and the size and shape of the NPs. Results show that when NPs aggregate parallel to the cell membrane, increasing the membrane tension will modulate the membrane-mediated interaction between the NPs from attractive to attractive-repulsive and finally to purely repulsive. In contrast, the membrane-mediated interaction is attractive and independent of the membrane tension when the NPs aggregate to a tubular configuration. For the aggregation of NPs of different sizes, the large-size NP is wrapped to a greater extent than the small-size NP. For the aggregation of nonspherical NPs, low aspect ratio and weak NP-membrane adhesion strength lead to the side-to-side configuration, whereas a system with a high aspect ratio and strong NP-membrane adhesion strength prefers the tip-to-tip configuration. Importantly, NPs of different sizes and anisotropic shapes are found to facilitate the aggregation process by reducing the energy barrier that should be overcome during the aggregation. The results reveal the mechanism of the aggregation of NPs on the cell membrane and provide guidelines to the design of NP-based drug delivery systems.
Collapse
Affiliation(s)
- Huayuan Tang
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | |
Collapse
|
8
|
Pijpers IAB, Abdelmohsen LKEA, Xia Y, Cao S, Williams DS, Meng F, Hest JCM, Zhong Z. Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proof‐of‐Concept Studies. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Imke A. B. Pijpers
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Yifeng Xia
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Shoupeng Cao
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | | | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Jan C. M. Hest
- Eindhoven University of Technology P.O. Box 513 (STO 3.31) 5600MB Eindhoven The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| |
Collapse
|
9
|
Bottlebrush block polymers in solutions: Self-assembled microstructures and interactions with lipid membranes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Li S, Luo Z, Xu Y, Ren H, Deng L, Zhang X, Huang F, Yue T. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2096-2105. [DOI: 10.1016/j.bbamem.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 01/11/2023]
|
11
|
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017; 117:11476-11521. [DOI: 10.1021/acs.chemrev.7b00194] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Calum Kinnear
- Bio21 Institute & School of Chemistry, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | |
Collapse
|
12
|
Yue T, Li S, Xu Y, Zhang X, Huang F. Interplay between Nanoparticle Wrapping and Clustering of Inner Anchored Membrane Proteins. J Phys Chem B 2016; 120:11000-11009. [DOI: 10.1021/acs.jpcb.6b08667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | - Xianren Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | | |
Collapse
|
13
|
Till U, Gibot L, Mingotaud C, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Self-assembled polymeric vectors mixtures: characterization of the polymorphism and existence of synergistic effects in photodynamic therapy. NANOTECHNOLOGY 2016; 27:315102. [PMID: 27334669 DOI: 10.1088/0957-4484/27/31/315102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The objective of this work was to assess the relation between the purity of polymeric self-assemblies vectors solution and their photodynamic therapeutic efficiency. For this, several amphiphilic block copolymers of poly(ethyleneoxide-b-ε-caprolactone) have been used to form self-assemblies with different morphologies (micelles, worm-like micelles or vesicles). In a first step, controlled mixtures of preformed micelles and vesicles have been characterized both by dynamic light scattering and asymmetrical flow field flow fractionation (AsFlFFF). For this, a custom-made program, STORMS, was developed to analyze DLS data in a thorough manner by providing a large set of fitting parameters. This showed that DLS only sensed the larger vesicles when the micelles/vesicles ratio was 80/20 w/w. On the other hand, AsFlFFF allowed clear detection of the presence of micelles when this same ratio was as low as 10/90. Subsequently, the photodynamic therapy efficiency of various controlled mixtures was assessed using multicellular spheroids when a photosensitizer, pheophorbide a, was encapsulated in the polymer self-assemblies. Some mixtures were shown to be as efficient as monomorphous systems. In some cases, mixtures were found to exhibit a higher PDT efficiency compared to the individual nano-objects, revealing a synergistic effect for the efficient delivery of the photosensitizer. Polymorphous vectors can therefore be superior in therapeutic applications.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, Institut National Polytechnique de Toulouse-Ecole d'Ingénieurs de Purpan, Département Sciences Agronomiques et Agroalimentaires, 75 voie du TOEC, BP 57611, F-31076 Toulouse Cedex 03, France. Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Till U, Gibot L, Vicendo P, Rols MP, Gaucher M, Violleau F, Mingotaud AF. Crosslinked polymeric self-assemblies as an efficient strategy for photodynamic therapy on a 3D cell culture. RSC Adv 2016. [DOI: 10.1039/c6ra09013c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric crosslinked self-assemblies based on poly(ethyleneoxide-b-ε-caprolactone) have been synthesized. They are shown to be more efficient vectors for photodynamic therapy compared to uncrosslinked systems.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Laure Gibot
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Patricia Vicendo
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale
- Université de Toulouse
- CNRS
- UPS
- France
| | - Mireille Gaucher
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Département Sciences Agronomiques et Agroalimentaires
- F-31076 Toulouse Cedex 03
- France
| | - Frédéric Violleau
- Université de Toulouse
- Institut National Polytechnique de Toulouse – Ecole d'Ingénieurs de Purpan
- Laboratoire de Chimie Agro-Industrielle
- Toulouse
- France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- Toulouse Cedex 9
| |
Collapse
|