1
|
Chen HN, Yang L, Huang J, Song WL, Chen HS. Theory of electrotuneable mechanical force of solid-liquid interfaces: A self-consistent treatment of short-range van der Waals forces and long-range electrostatic forces. J Chem Phys 2024; 161:084110. [PMID: 39185848 DOI: 10.1063/5.0220779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
Elucidating the mechanical forces between two solid surfaces immersed in a communal liquid environment is crucial for understanding and controlling adhesion, friction, and electrochemistry in many technologies. Although traditional models can adequately describe long-range mechanical forces, they require substantial modifications in the nanometric region where electronic effects become important. A hybrid quantum-classical model is employed herein to investigate the separation-dependent disjoining pressure between two metal surfaces immersed in an electrolyte solution under potential control. We find that the pressure between surfaces transits from a long-range electrostatic interaction, attractive or repulsive depending on the charging conditions of surfaces, to a strong short-range van der Waals attraction and then an even strong Pauli repulsion due to the redistribution of electrons. The underlying mechanism of the transition, especially the attractive-repulsive one in the short-range region, is elucidated. This work contributes to the understanding of electrotunable friction and lubrication in a liquid environment.
Collapse
Affiliation(s)
- Hai-Na Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Le Yang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Jun Huang
- Institute of Energy and Climate Research, IEK-13: Theory and Computation of Energy Materials, Forschungszentrum Julich GmbH, 52425 Julich, Germany
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Hao-Sen Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Re-entrant swelling and redissolution of polyelectrolytes arises from an increased electrostatic decay length at high salt concentrations. J Colloid Interface Sci 2020; 579:369-378. [DOI: 10.1016/j.jcis.2020.06.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
|
3
|
Trefalt G, Cao T, Sugimoto T, Borkovec M. Heteroaggregation between Charged and Neutral Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5303-5311. [PMID: 32324407 DOI: 10.1021/acs.langmuir.0c00667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Experimentally determined heteroaggregation rates between charged and neutral colloidal particles are reported for the first time. Different positively and negatively charged polystyrene latex particles are investigated. The neutral particles are obtained through adsorption of an appropriate amount of oppositely charged additives, such as aliphatic oligoamines, iron cyanide complexes, or alkyl sulfates. Heteroaggregation rates were measured with time-resolved multiangle light scattering. One observes that heteroaggregation between charged and neutral particles is always fast and diffusion controlled. These experimental values are compared with calculations of the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, whereby one finds that this heteroaggregation process is highly sensitive to charge regulation conditions. The comparison with experiments shows unambiguously that the surface of the neutral particles regulates strongly and probably behaves close to a constant potential surface. This observation is in line with direct force measurements on similar systems and further agrees with the fact that for neutral surfaces the capacitance of the diffuse layer is expected to be much smaller than the one of the inner layer.
Collapse
Affiliation(s)
- Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Tianchi Cao
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Takuya Sugimoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyou-ku, Tokyo 113-8657, Japan
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| |
Collapse
|
4
|
Smith AM, Borkovec M, Trefalt G. Forces between solid surfaces in aqueous electrolyte solutions. Adv Colloid Interface Sci 2020; 275:102078. [PMID: 31837508 DOI: 10.1016/j.cis.2019.102078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 11/15/2022]
Abstract
This review addresses experimental findings obtained with direct force measurements between two similar or dissimilar solid surfaces in aqueous electrolyte solutions. Interpretation of these measurements is mainly put forward in terms of the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). This theory invokes a superposition of attractive van der Waals forces and repulsive double layer forces. DLVO theory is shown to be extremely reliable, even in the case of multivalent ions. However, such a description is only successful, when appropriate surface charge densities, charge regulation characteristics, and ion pairing or complexation equilibria in solution are considered. Deviations from DLVO theory only manifest themselves at distances of typically below few nm. More long-ranged non-DLVO forces can be observed in some situations, particularly, in concentrated electrolyte solutions, in the presence of strongly adsorbed layers, or for hydrophobic surfaces. The latter forces probably originate from patch-charge surface heterogeneities, which can be induced by ion-ion correlation effects, charge fluctuations, or other types of surface heterogeneities.
Collapse
Affiliation(s)
- Alexander M Smith
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland.
| |
Collapse
|
5
|
Boinovich LB. Boundary layers and surface forces in pure nonaqueous liquids. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Bandyopadhyay P, Gupta-Bhaya P. A comparative evaluation of pair correlation functions for a highly asymmetric electrolyte with mono and divalent counterions from integral equation theory in hypernetted chain (HNC) approximation and Monte Carlo simulation. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang H, Evans D, Voelcker NH, Griesser HJ, Meagher L. Interfacial Forces at Layered Surfaces: Substrate Electrical Double-Layer Forces Acting through Ultrathin Polymer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11679-11689. [PMID: 31407904 DOI: 10.1021/acs.langmuir.9b02176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Manipulating the surface properties of materials via the application of coatings is a widely used strategy to achieve desired interfacial interactions, implicitly assuming that the interfacial forces of coated samples are determined exclusively by the surface properties of the coatings. However, interfacial interactions between materials and their environments operate over finite length scales. Thus, the question addressed in this study is whether interactions associated with bulk substrate materials could act through thin coatings or, conversely, how thick a coating needs to be to completely screen subsurface forces contributed by underlying substrates. Plasma polymer layers were deposited on silicon wafer substrates from ethanol vapor, with identical chemical composition, ultrasmooth surfaces, and varying thicknesses. Using colloid-probe atomic force microscopy, electrical double-layer forces were determined in solutions of various ionic strengths and fitted using the Derjaguin-Landau-Verwey-Overbeek theory. For the thicker ethanol plasma polymers, the fitted surface potentials reflected the presence of surface carboxylate groups and were invariant with thickness. In contrast, for coatings <18 nm thick, the surface potentials increased steadily with decreasing film thickness; the measured electrical double-layer forces contained contributions from both the coating and the substrate. Theoretical calculations were in agreement with this model. Thus, our observations indicate that the higher surface potential of the underlying SiO2 surface can influence the interactions between a colloid particle and the multilayer structure if coatings are sufficiently thin. Such superposition needs to be factored into the design of coatings aimed at the control of material interactions via surface forces.
Collapse
Affiliation(s)
- Hongfang Wang
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Drew Evans
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Nicolas H Voelcker
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
- Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Hans J Griesser
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
8
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
9
|
Measuring Inner Layer Capacitance with the Colloidal Probe Technique. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2040065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The colloidal probe technique was used to measure the inner layer capacitance of an electrical double layer. In particular, the forces were measured between silica surfaces and sulfate latex surfaces in solutions of monovalent salts of different alkali metals. The force profiles were interpreted with Poisson-Boltzmann theory with charge regulation, whereby the diffuse layer potential and the regulation properties of the interface were obtained. While the diffuse layer potential was measured in this fashion in the past, we are able to extract the regulation properties of the inner layer, in particular, its capacitance. We find systematic trends with the type of alkali metal ion and the salt concentration. The observed trends could be caused by difference in ion hydration, variation of the binding capacitance, and changes of the effective dielectric constant within the Stern layer. Our results are in agreement with recent experiments involving the water-silica interface based on a completely independent method using X-ray photoelectron spectroscopy in a liquid microjet. This agreement confirms the validity of our approach, which further provides a means to probe other types of interfaces than silica.
Collapse
|
10
|
Sugimoto T, Cao T, Szilagyi I, Borkovec M, Trefalt G. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions. J Colloid Interface Sci 2018; 524:456-464. [DOI: 10.1016/j.jcis.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
11
|
Kanduč M, Moazzami-Gudarzi M, Valmacco V, Podgornik R, Trefalt G. Interactions between charged particles with bathing multivalent counterions: experiments vs. dressed ion theory. Phys Chem Chem Phys 2018; 19:10069-10080. [PMID: 28367551 DOI: 10.1039/c7cp00685c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We compare the recent experimentally measured forces between charged colloidal particles, as well as their effective surface potentials (surface charge) in the presence of multivalent counterions in a bathing monovalent salt solution, with the predictions of the dressed ion theory of strongly charged colloidal systems. The benchmark for comparison is provided by the DLVO theory and the deviations from its predictions at small separations are taken as an indication of the additional non-DLVO attractions that can be fitted by an additional phenomenological exponential term. The parameters characterizing this non-DLVO exponential term as well as the dependencies of the effective potential on the counterion concentration and valency predicted by the dressed ion theory are well within the experimental values. This suggests that the deviations from the DLVO theory are probably caused by ion correlations as formalized within the dressed ion theory.
Collapse
Affiliation(s)
- Matej Kanduč
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Moazzami-Gudarzi M, Adam P, Smith AM, Trefalt G, Szilágyi I, Maroni P, Borkovec M. Interactions between similar and dissimilar charged interfaces in the presence of multivalent anions. Phys Chem Chem Phys 2018; 20:9436-9448. [DOI: 10.1039/c8cp00679b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With direct force measurements, we identify a short-ranged attraction, which acts not only between similar interfaces, but also between dissimilar ones.
Collapse
Affiliation(s)
- Mohsen Moazzami-Gudarzi
- National Graphene Institute
- University of Manchester
- Manchester M13 9PL
- UK
- Department of Inorganic and Analytical Chemistry
| | - Pavel Adam
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Alexander M. Smith
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - István Szilágyi
- Department of Physical Chemistry and Materials Science
- University of Szeged
- 6720 Szeged
- Hungary
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
13
|
Helfricht N, Mark A, Dorwling-Carter L, Zambelli T, Papastavrou G. Extending the limits of direct force measurements: colloidal probes from sub-micron particles. NANOSCALE 2017; 9:9491-9501. [PMID: 28660974 DOI: 10.1039/c7nr02226c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Direct force measurements by atomic force microscopy (AFM) in combination with the colloidal probe technique are widely used to determine interaction forces in colloidal systems. However, a number of limitations are still preventing a more universal applicability of this technique. Currently, one of the most significant limitations is that only particles with diameters of several micrometers can be used as probe particles. Here, we present a novel approach, based on the combination of nanofluidics and AFM (also referred to as FluidFM-technique), that allows to overcome this size limit and extend the size of suitable probe particles below diameters of 500 nanometers. Moreover, by aspiration of colloidal particles with a hollow AFM-cantilever, the immobilization process is independent of the particle's surface chemistry. Furthermore, the probe particles can be exchanged in situ. The applicability of the FluidFM-technique is demonstrated with silica particles, which are also the types of particles most often used for the preparation of colloidal probes. By comparing 'classical' colloidal probes, i.e. probes from particles irreversibly attached with glue, and various particle sizes aspirated by the FluidFM-technique, we can quantitatively evaluate the instrumental limits. Evaluation of the force profiles demonstrate that even for 500 nm silica particles the diffuse layer properties can be evaluated quantitatively. Therefore, direct force measurements on the level of particle sizes used in industrial formulations will become available in the future.
Collapse
Affiliation(s)
- Nicolas Helfricht
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
14
|
Cao T, Sugimoto T, Szilagyi I, Trefalt G, Borkovec M. Heteroaggregation of oppositely charged particles in the presence of multivalent ions. Phys Chem Chem Phys 2017; 19:15160-15171. [DOI: 10.1039/c7cp01955f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Time-resolved dynamic light scattering is used to measure absolute heteroaggregation rate coefficients and the corresponding stability ratios for heteroaggregation between amidine and sulfate charged latex particles.
Collapse
Affiliation(s)
- Tianchi Cao
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Takuya Sugimoto
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Michal Borkovec
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|