1
|
Mahala S, Arumugam SM, Kumar S, Singh D, Sharma S, Devi B, Yadav SK, Elumalai S. Sn Doping on Ta
2
O
5
Facilitates Glucose Isomerization for Enriched 5‐Hydroxymethylfurfural Production and its True Response Prediction using a Neural Network Model. ChemCatChem 2021. [DOI: 10.1002/cctc.202101046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sangeeta Mahala
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Punjab 140306 India
| | - Senthil M. Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sandeep Kumar
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
- Dr. SSB University Institute of Chemical Engineering and Technology Panjab University Chandigarh 160014 India
| | - Dalwinder Singh
- Computational Biology Division DBT-National Agri-Food Biotechnology Institute Mohali Punjab 140306 India
| | - Shelja Sharma
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Bhawana Devi
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Punjab 140306 India
| | - Sudesh K. Yadav
- Biotechnology & Synthetic Biology Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| |
Collapse
|
2
|
Abstract
Lignocellulosic biomass, a cheap and plentiful resource, could play a key role in the production of sustainable chemicals. The simple sugars contained in the renewable lignocellulosic biomass can be converted into commercially valuable products such as 5-hydroxymethyl furfural (HMF). A platform molecule, HMF can be transformed into numerous chemical products with potential applications in a wide variety of industries. Of the hexoses contained in the lignocellulosic biomass, the successful production of HMF from glucose has been a challenge. Various heterogeneous catalysts have been proposed over the last decade, ranging from zeolites to metal organic frameworks. The reaction conditions vary in the reports in the literature, which makes it difficult to compare catalysts reported in different studies. In addition, the slight variations in the synthesis of the same material in different laboratories may affect the activity results, because the selectivity towards desired products in this transformation strongly depends on the nature of the active sites. This poses another difficulty for the comparison of different reports. Furthermore, over the last decade the new catalytic systems proposed have increased profoundly. In this article, we summarize the heterogeneous catalysts: Metal Organic Frameworks (MOFs), zeolites and conventional supported catalysts, that have been reported in the recent literature and provide an overview of the observed catalytic activity, in order to provide a comparison.
Collapse
|
3
|
Torres-Olea B, García-Sancho C, Cecilia J, Oregui-Bengoechea M, Arias P, Moreno-Tost R, Maireles-Torres P. Influence of Lewis acidity and CaCl2 on the direct transformation of glucose to 5-hydroxymethylfurfural. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Tangsermvit V, Pila T, Boekfa B, Somjit V, Klysubun W, Limtrakul J, Horike S, Kongpatpanich K. Incorporation of Al 3+ Sites on Brønsted Acid Metal-Organic Frameworks for Glucose-to-Hydroxylmethylfurfural Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006541. [PMID: 33733619 DOI: 10.1002/smll.202006541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/23/2020] [Indexed: 06/12/2023]
Abstract
5-hydroxylmethylfurfural (HMF) is a bio-based chemical that can be prepared from natural abundant glucose by using combined Brønsted-Lewis acid catalysts. In this work, Al3+ catalytic site has been grafted on Brønsted metal-organic frameworks (MOFs) to enhance Brønsted-Lewis acidity of MOF catalysts for a one-pot glucose-to-HMF transformation. The uniform porous structure of zirconium-based MOFs allows the optimization of both acid strength and density of acid sites in MOF-based catalysts by incorporating the desired amount of Al3+ catalytic sites at the organic linker. Al3+ sites generated via a post-synthetic modification act as Lewis acid sites located adjacent to the Brønsted sulfonated sites of MOF structure. The local structure of the Al3+ sites incorporated in MOFs has been elucidated by X-ray absorption near-edge structure (XANES) combined with density functional theory (DFT) calculations. The cooperative effect from Brønsted and Lewis acids located in close proximity and the high acid density is demonstrated as an important factor to achieve high yield of HMF.
Collapse
Affiliation(s)
- Vitsarut Tangsermvit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Taweesak Pila
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Bundet Boekfa
- Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Vetiga Somjit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Satoshi Horike
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Institute for Integrated Cell-Material Science, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kanokwan Kongpatpanich
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
5
|
|
6
|
Chi Z, Zhao S, Feng Y, Yang L. High-throughput monitoring of biomass conversion reaction with automatic time-resolved analysis. J Chromatogr A 2021; 1646:462145. [PMID: 33887542 DOI: 10.1016/j.chroma.2021.462145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Reactions of biomass conversions are of great importance in fine chemistry for substantial development. While numerous studies have been performed to search for functional materials to catalyze biomass conversions, a robust and high-throughput analytical method is rather limited, which may hamper further integration and automation of the reactions. Here we propose an automatic and sequential method for the investigation of glucose conversion. By combining sequential sample injection and high-speed capillary electrophoresis (HSCE) techniques, we can monitor the glucose conversion from the beginning toward the end with a good temporal resolution. The HSCE assays are performed using short capillaries (effective length of 10 cm, i.d./o.d. of 50 μm/365 μm), and the analytes are separated at an electric field of 467 V/cm and are detected by UV-absorption at 200 nm with mixed 0.2 mM CTAB, 10 mM borate, 20 mM sorbic acid (pH 12.2) as the background electrolyte. All compounds involved in the reaction, including all products (fructose, 5-hydroxymethylfurfural, formic acid and levulinic acid) and the remaining substrate glucose, are efficiently separated and simultaneously detected from just one analysis with a temporal resolution of one minute. The method exhibits high-resolution separation, a wide linear range with limit-of-detection down to μg/mL-level, as well as excellent repeatability in sequential analysis. It is indicated that the proposed method is of great value in the analysis of complicated biomass conversion and could be potentially applied in various catalytic chemical reactions.
Collapse
Affiliation(s)
- Zhongmei Chi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Yunxiang Feng
- Jingke-Oude Science and Education Instruments Co. Ltd., Changchun, Jilin Province 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
7
|
Pham ST, Nguyen MB, Le GH, Nguyen TD, Pham CD, Le TS, Vu TA. Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity. CHEMOSPHERE 2021; 265:129062. [PMID: 33250232 DOI: 10.1016/j.chemosphere.2020.129062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The modified Al-MCM-41 solid acids with turning Si/Al molar ratio were successfully fabricated through a hydrothermal route and utilized as a suitable catalyst in the cellulose conversion into 5-hydroxylmethylfurfural (5-HMF). The crystal structure, composition, morphologies and porosity of as-synthesized acids were characterized by XRD, FT-IR, N2 adsorption-desorption, TEM and EDS. The 27Al MAS NMR and 29Si-MAS NMR results revealed the existence of both Al framework and Al extra framework. Besides, the existence of medium-weak and strong acid sites, according to Brønsted and Lewis acidity, in Al-MCM-41 acids was confirmed by NH3-TPD and FTIR-pyridine adsorption. The 30Al-MCM-41 solid acid (Si/Al molar ratio = 30) exhibited excellent activity with the highest 5-HMF yield of 40.56% compared to other samples. We also discovered that 5-HMF production, as well as cellulose conversion, strongly depended on the total acid, strong/medium-weak acid ratio, as well as Brønsted/Lewis acid ratio. Therefore, these parameters have been considered as essential factors for the design of solid acid for 5-HMF production.
Collapse
Affiliation(s)
- Son Tung Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Manh B Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam.
| | - Giang H Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@ GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Chinh D Pham
- Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam
| | - Thanh Son Le
- Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Tuan A Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam.
| |
Collapse
|
8
|
Zhang T, Wei H, Xiao H, Li W, Jin Y, Wei W, Wu S. Advance in constructing acid catalyst-solvent combinations for efficient transformation of glucose into 5-Hydroxymethylfurfural. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Meneses-Olmedo LM, Cuesta Hoyos S, Salgado Moran G, Cardona Villada W, Gerli Candia L, Mendoza-Huizar LH. Insights on the mechanism, reactivity and selectivity of fructose and tagatose dehydration into 5-hydroxymethylfurfural: A DFT study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shao Y, Tsang DCW, Shen D, Zhou Y, Jin Z, Zhou D, Lu W, Long Y. Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction. ENVIRONMENTAL RESEARCH 2020; 184:109340. [PMID: 32209494 DOI: 10.1016/j.envres.2020.109340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
5-Hydroxymethylfurfural (HMF) as value-added platform chemical can be derived from biomass. This study used microwave hydrothermal liquefaction (MHTL) to obtain HMF from sugarcane bagasse in acidic seawater conditions. The key processing parameters including temperature, reaction time, and liquid-to-solid ratio (L/S) were evaluated and optimized. The highest HMF yield of 8.1 wt% was obtained at 149 °C with a reaction time of 4 min and a L/S value of 12:1, respectively. This yield is considerable and even higher than the yield derived from sugarcane molasses under similar microwave conditions in the absence of seawater. Hence, acidic seawater was found to promote the hydrolysis of sugarcane bagasse to give HMF precursor (i.e. fructose and glucose), while simultaneously inhibiting the conversion of HMF to levulinic acid under MHTL conditions, possibly explaining the high HMF yield. This method presents a new and sustainable means of transforming waste biomass to valuable substances using seawater or brine wastewater.
Collapse
Affiliation(s)
- Yuchao Shao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zhiyuan Jin
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dan Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
11
|
Muranaka Y, Matsubara K, Maki T, Asano S, Nakagawa H, Mae K. 5-Hydroxymethylfurfural Synthesis from Monosaccharides by a Biphasic Reaction-Extraction System Using a Microreactor and Extractor. ACS OMEGA 2020; 5:9384-9390. [PMID: 32363290 PMCID: PMC7191840 DOI: 10.1021/acsomega.0c00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
5-Hydroxymethylfurfural (HMF) was synthesized from monosaccharides by a biphasic reaction system using a microreactor. The biphasic reaction system realized an immediate extraction and stabilization of product HMF, which further degrades under the reaction conditions. Segmented flow was utilized for an efficient reaction-extraction tool. The effect of extraction ability was evaluated based on the extraction phase/reaction phase partition coefficient of HMF. A Lewis acid catalyst was introduced to overcome the obstacle of the reaction, which was clarified as the isomerization of glucose to fructose, and improved the HMF yield to 85 mol % under the condition of T = 180 °C and τ = 47 min. The recovery of the product HMF was also examined using a constructed microextraction system, and HMF was selectively recovered from the extraction phase.
Collapse
Affiliation(s)
- Yosuke Muranaka
- Department
of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kenta Matsubara
- Department
of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Taisuke Maki
- Department
of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Shusaku Asano
- Institute
for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816-8580, Japan
| | - Hiroyuki Nakagawa
- Department
of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kazuhiro Mae
- Department
of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
12
|
Sn-Based Porous Coordination Polymer Synthesized with Two Ligands for Tandem Catalysis Producing 5-Hydroxymethylfurfural. Catalysts 2019. [DOI: 10.3390/catal9090739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
5-Hydroxymethylfurfural (HMF) is a biomass-derived important platform compound. Developing an efficient catalyst for producing HMF from a biomass source is important. Herein, using the ligands 5-sulfoisophthalic acid (SPA) and imidazole (Imd), a tin-based porous coordination polymer was synthesized, namely SPA-Imd-TinPCP. This novel material possesses a multifunctional catalysis capability. The coordinated tin (IV) can catalyze the isomerization of glucose to fructose. The ligand imidazole, as an additional base site, can catalyze glucose isomerization. The sulfonic group of the ligand SPA can catalyze the dehydration of fructose to HMF. SPA-Imd-TinPCP was used as a catalyst for the conversion of glucose to HMF. HMF yields of 59.5% in dimethyl sulfoxide (DMSO) and 49.8% in the biphasic solvent of water/tetrahydrofuran were obtained. Consecutive use of SPA-Imd-TinPCP demonstrated that, after reusing it five times, there was no significant activity loss in terms of the glucose conversion and HMF yield.
Collapse
|
13
|
He J, Li H, Saravanamurugan S, Yang S. Catalytic Upgrading of Biomass-Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbon-Chain Length Variation. CHEMSUSCHEM 2019; 12:347-378. [PMID: 30407741 DOI: 10.1002/cssc.201802113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Indexed: 05/07/2023]
Abstract
Shifting from petroleum-based resources to inedible biomass for the production of valuable chemicals and fuels is one of the significant aspects in sustainable chemistry for realizing the sustainable development of our society. Various renowned biobased platform molecules, such as 5-hydroxymethylfurfural, furfural, levulinic acid, and lactic acid, are successfully accessible from the transformation of biobased sugars. To achieve the specific reaction routes, heterogeneous nanoporous acidic materials have served as promising catalysts for the conversion of bio-sugars in the past decade. This Review summarizes advances in various nanoporous acidic materials for bio-sugar conversion, in which the number of carbon atoms is variable and controllable with the assistance of the switchable structure of nanoporous materials. The major focus of this Review is on possible reaction pathways/mechanisms and the relationships between catalyst structure and catalytic performance. Moreover, representative examples of catalytic upgrading of biobased platform molecules to biochemicals and fuels through selective C-C cleavage and coupling strategies over nanoporous acidic materials are also discussed.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Mohali, 140 306, Punjab, India
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide, & Agricultural Bioengineering, Key Laboratory of Green Pesticide, & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, PR China
| |
Collapse
|
14
|
Ma W, Qiao Y, Theyssen N, Zhou Q, Li D, Ding B, Wang D, Hou Z. A mononuclear tantalum catalyst with a peroxocarbonate ligand for olefin epoxidation in compressed CO2. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A mononuclear tantalum complex bonded to a peroxocarbonate ligand has been proved to be particularly important in the epoxidation reactions.
Collapse
Affiliation(s)
- Wenbao Ma
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yunxiang Qiao
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Nils Theyssen
- Max-Planck-Institut für Kohlenforschung
- 45470 Mülheim an der Ruhr
- Germany
| | - Qingqing Zhou
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Difan Li
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Bingjie Ding
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongqi Wang
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
15
|
Huang F, Li W, Zhang T, Li D, Liu Q, Zhu X, Ma L. Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3432-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Jia S, He X, Ma J, Wang K, Xu Z, Zhang ZC. Efficient synthesis of 5-hydroxymethylfurfural from mannose with a reusable MCM-41-supported tin catalyst. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01630e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Sn/MCM-41 catalyst was demonstrated to be effective for the conversion of mannose into 5-HMF, with comparable performances to those of reported heterogeneous catalysts. The Sn/MCM-41 catalyst was reusable without significant loss of activity after eight consecutive runs.
Collapse
Affiliation(s)
- Songyan Jia
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Xinjun He
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Jiao Ma
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Kangjun Wang
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang
- China
| | - Zhanwei Xu
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian
- China
| | - Z. Conrad Zhang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian
- China
| |
Collapse
|
17
|
Saxena P, Velaga B, Peela NR. Ionic Liquid-Encapsulated Zeolite Catalysts for the Conversion of Glucose to 5-Hydroxymethylfurfural. ChemistrySelect 2017. [DOI: 10.1002/slct.201701955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pooja Saxena
- Department of Chemical Engineering; Indian Institution of Technology Guwahati; Guwahati, Assam India PIN 781039
| | - Bharath Velaga
- Department of Chemical Engineering; Indian Institution of Technology Guwahati; Guwahati, Assam India PIN 781039
| | - Nageswara Rao Peela
- Department of Chemical Engineering; Indian Institution of Technology Guwahati; Guwahati, Assam India PIN 781039
| |
Collapse
|
18
|
|
19
|
Li M, Li W, Lu Y, Jameel H, Chang HM, Ma L. High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system. RSC Adv 2017. [DOI: 10.1039/c7ra00701a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HCl as a catalyst and NaCl as a promoter result in impressive selectivity and HMF yield in a water/γ-valerolactone system.
Collapse
Affiliation(s)
- Minghao Li
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Yijuan Lu
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Hasan Jameel
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Hou-min Chang
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| | - Longlong Ma
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
| |
Collapse
|
20
|
Zhang Z, Song J, Han B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chem Rev 2016; 117:6834-6880. [PMID: 28535680 DOI: 10.1021/acs.chemrev.6b00457] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interesting and important area.
Collapse
Affiliation(s)
- Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|