1
|
Calhau IB, Gomes AC, Mendes RF, Almeida Paz FA, Gonçalves IS, Pillinger M. An organic-organometallic CO-releasing material comprising 4,4'-bipyridine and molybdenum subcarbonyl building blocks. Dalton Trans 2024; 53:12783-12796. [PMID: 39023244 DOI: 10.1039/d4dt01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Over the past two decades, following the discovery of the important biological roles of carbon monoxide (CO), metal carbonyl complexes have been intensively studied as CO-releasing molecules (CORMs) for therapeutic applications. To improve the properties of "bare" low molecular weight CORMs, attention has been drawn to conjugating CORMs with macromolecular and inorganic scaffolds to produce CO-releasing materials (CORMAs) capable of storing and delivering large payloads of the gasotransmitter. A significant obstacle is to obtain CORMAs that retain the beneficial features of the parent CORMs. In the present work, a crystalline metal-organic framework (MOF) formulated as Mo(CO)3(4,4'-bipyridine)3/2 (Mobpy), with a structure based on Mo(CO)3 metallic nodes and bipyridine linkers, has been prepared in near quantitative yield by a straightforward reflux method, and found to exhibit CO-release properties that mimic those typically observed for molybdenum carbonyl CORMs. Mobpy was characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), FT-IR, FT-Raman and diffuse reflectance (DR) UV-vis spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR. The release of CO from Mobpy was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mobpy liberates CO upon contact with a physiological buffer in the dark, leading to a maximum released amount of 1.3-1.5 mmol g-1, after 1.5 h at 37 °C, with half-lives of 0.5-1.0 h (time to transfer 0.5 equiv. of CO to Mb). In the solid-state and under open air, Mobpy undergoes complete decarbonylation over a period of 42 days, corresponding to a theoretical CO-release of 7.25 mmol g-1.
Collapse
Affiliation(s)
- Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ricardo F Mendes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Filipe A Almeida Paz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Hao DB, Li JL, Zhou XC, Li YY, Zhao ZX, Zhou R. Visible-Light-Driven NO Release from Postmodified MOFs via Photoinduced Electron Transfer for Antibacterial Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305943. [PMID: 37681501 DOI: 10.1002/smll.202305943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Photoresponsive nitric oxide (NO)-releasing materials (NORMs) enable the spatiotemporal delivery of NO to facilitate their potential applications in physiological conditions. Here two novel metal-organic frameworks (MOFs)-based photoactive NORMs achieved by the incorporation of prefunctionalized NO donors into the photosensitive Fe-MOFs via a postmodification strategy is reported. The modified Fe-MOFs display superior photoactivity of NO release when exposed to visible light (up to 720 nm). Significantly, the visible-light-driven NO release properties are further corroborated by their efficient antibacterial performance.
Collapse
Affiliation(s)
- De-Bo Hao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Jia-Li Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Xian-Chao Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhen-Xin Zhao
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467036, China
| | - Rui Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
3
|
Carmona FJ, Negrão Chuba T, Sánchez-González E, Pirillo J, Hijikata Y, Furukawa S. Dual photoresponsive & water-triggered nitric oxide releasing materials based on rhodium-based metal-organic polyhedra. J Mater Chem B 2023; 12:233-239. [PMID: 38084014 DOI: 10.1039/d3tb02162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The exogenous administration of nitric oxide (NO) is considered a potential therapeutic treatment against a great variety of diseases due to its significant role in multiple physiological functions. Due to the gaseous nature, short lifetime and dose- and tissue-dependent activity of this molecule, the development of new administration procedures is required to control the NO delivery in terms of dosage, timing, and location. In this work, we propose a new molecular material based on robust metal-organic polyhedra (MOPs) for controlled NO release. We select dirhodium paddlewheel complex-based cuboctahedral MOPs (RhMOP), in which NO can chemically coordinate to the open-metal sites at the axial sites of dirhodium paddlewheel moieties. We further prepare amorphous coordination polymer particles (CPPs) by connecting RhMOP with bis(imidazole) linkers at the external axial sites. Both molecular MOPs and polymeric CPPs show relevant NO payloads and the release of NO can be triggered by two different stimuli: light and humidity. We show that imidazole ligands coordinating to the external axial sites of the paddlewheel moieties tune the light-triggered NO release property. We further demonstrate that the size and the extrinsic pores of CPPs are important for enhanced NO release.
Collapse
Affiliation(s)
- Francisco J Carmona
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Thiago Negrão Chuba
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8306, Japan
| | - Elí Sánchez-González
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Jenny Pirillo
- Department of Chemistry and Biotechnology, School of Engineering, and Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuh Hijikata
- Research Center for Net Zero Carbon Society, Institute of Innovation for Future Society, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Qiu Y, Zhao T, Lu X, Yuan Q, Gregg S, Nze RP, Xiao B. Ultraviolet Light Responsive N-Nitroso Polymers for Antibacterial Nitric Oxide Delivery. Macromol Rapid Commun 2023; 44:e2300473. [PMID: 37730214 DOI: 10.1002/marc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/17/2023] [Indexed: 09/22/2023]
Abstract
This study investigates the incorporation of active secondary amine moieties into the polymer backbone by co-polymerizing 2,4,6-tris(chloromethyl)-mesitylene with three diamines, namely 1,4-diaminobutane, m-phenylenediamine, and p-phenylenediamine. This process results in the stabilization of the amine moieties and the subsequently introduced nitroso groups. Charging bioactive nitric oxide (NO) into the polymers is accomplished by converting the amine moieties into N-nitroso groups. The ability of the polymers to store and release NO depends on their structures, particularly the amount of incorporated active secondary amines. With grafting photosensitive N-nitroso groups into the polymers, the derived NO@polymers exhibit photoresponsivity. NO release is completely regulated by adjusting UV light irradiation. These resulting polymeric NO donors demonstrate remarkable bactericidal and bacteriostatic activity, effectively eradicating E. coli bacteria and inhibiting their growth. The findings from this study hold promising implications for combining NO delivery with phototherapy in various medical applications.
Collapse
Affiliation(s)
- Yusheng Qiu
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Taoran Zhao
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin Lu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qingchun Yuan
- Chemical Engineering and Applied Chemistry, Aston University, Birmingham, B4 7ET, UK
| | - Sharon Gregg
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - René-Ponce Nze
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| | - Bo Xiao
- Department School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
5
|
Sun Z, Li T, Mei T, Liu Y, Wu K, Le W, Hu Y. Nanoscale MOFs in nanomedicine applications: from drug delivery to therapeutic agents. J Mater Chem B 2023; 11:3273-3294. [PMID: 36928915 DOI: 10.1039/d3tb00027c] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Metal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug. In this review, the advances in delivery systems and applications as therapeutic agents for nanoscale MOF-based materials are summarized. The challenges of MOFs in clinical translation and the future directions in the field of MOFs therapy are also discussed. We hope that more researchers will focus their attention on advancing and translating MOF-based nanodrugs into pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Zeyi Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. .,Shanghai East Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieyan Li
- Department of Cardiovascular Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yang Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kerui Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Lim JYC, Goh L, Otake KI, Goh SS, Loh XJ, Kitagawa S. Biomedically-relevant metal organic framework-hydrogel composites. Biomater Sci 2023; 11:2661-2677. [PMID: 36810436 DOI: 10.1039/d2bm01906j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) are incredibly versatile three-dimensional porous materials with a wide range of applications that arise from their well-defined coordination structures, high surface areas and porosities, as well as ease of structural tunability due to diverse compositions achievable. In recent years, following advances in synthetic strategies, development of water-stable MOFs and surface functionalisation techniques, these porous materials have found increasing biomedical applications. In particular, the combination of MOFs with polymeric hydrogels creates a class of new composite materials that marries the high water content, tissue mimicry and biocompatibility of hydrogels with the inherent structural tunability of MOFs in various biomedical contexts. Additionally, the MOF-hydrogel composites can transcend each individual component such as by providing added stimuli-responsiveness, enhancing mechanical properties and improving the release profile of loaded drugs. In this review, we discuss the recent key advances in the design and applications of MOF-hydrogel composite materials. Following a summary of their synthetic methodologies and characterisation, we discuss the state-of-the-art in MOF-hydrogels for biomedical use - cases including drug delivery, sensing, wound treatment and biocatalysis. Through these examples, we aim to demonstrate the immense potential of MOF-hydrogel composites for biomedical applications, whilst inspiring further innovations in this exciting field.
Collapse
Affiliation(s)
- Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Leonard Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shermin S Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Giles GI, Erickson JR, Bussey CT. Photoactivation of tDodSNO induces localized vasodilation in rats: Metabolically stable S-nitrosothiols can act as targeted nitric oxide donors in vivo. Nitric Oxide 2022; 129:53-62. [DOI: 10.1016/j.niox.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
8
|
Chug MK, Brisbois EJ. Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections. J Control Release 2022; 349:227-240. [PMID: 35777483 PMCID: PMC9680949 DOI: 10.1016/j.jconrel.2022.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
A large fraction of nosocomial infections is associated with medical devices that are deemed life-threatening in immunocompromised patients. Medical device-related infections are a result of bacterial colonization and biofilm formation on the device surface that affects >1 million people annually in the US alone. Over the past few years, light-based antimicrobial therapy has made substantial advances in tackling microbial colonization. Taking the advantage of light and antibacterial properties of nitric oxide (NO), for the first time, a robust, biocompatible, anti-infective approach to design a universal disposable catheter disinfection insert (DCDI) that can both prevent bacterial adhesion and disinfect indwelling catheters in situ is reported. The DCDI is engineered using a photo-initiated NO donor molecule, incorporated in polymer tubing that is mounted on a side glow fiber optic connected to an LED light source. Using a smartphone application, the NO release from DCDI is photoactivated via white light resulting in tunable physiological levels of NO for up to 24 h. When challenged with microorganisms S. aureus and E. coli, the NO-releasing DCDI statistically reduced microbial attachment by >99% versus the controls with just 4 h of exposure. The DCDI also eradicated ∼97% of pre-colonized bacteria on the CVC catheter model demonstrating the ability to exterminate an established catheter infection. The smart, mobile-operated novel universal antibacterial device can be used to both prevent catheter infections or can be inserted within an infected catheter to eradicate the bacteria without complex surgical interventions. The therapeutic levels of NO generated via illuminating fiber optics can be the next-generation biocompatible solution for catheter-related bloodstream infections.
Collapse
Affiliation(s)
- Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Lin J, Ho W, Qin X, Leung CF, Au VKM, Lee SC. Metal-Organic Frameworks for NO x Adsorption and Their Applications in Separation, Sensing, Catalysis, and Biology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105484. [PMID: 35032140 DOI: 10.1002/smll.202105484] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen oxide (NOx ) is a family of poisonous and highly reactive gases formed when fuel is burned at high temperatures during anthropogenic behavior. It is a strong oxidizing agent that significantly contributes to the ozone and smog in the atmosphere. Thus, NOx removal is important for the ecological environment upon which the civilization depends. In recent decades, metal-organic frameworks (MOFs) have been regarded as ideal candidates to address these issues because they form a reticular structure between proper inorganic and organic constituents with ultrahigh porosity and high internal surface area. These characteristics render them chemically adaptable for NOx adsorption, separation, sensing, and catalysis. In additional, MOFs enable potential nitric oxide (NO) delivery for the signaling of molecular NO in the human body. Herein, the different advantages of MOFs for coping with current environmental burdens and improving the habitable environment of humans on the basis of NOx adsorption are reviewed.
Collapse
Affiliation(s)
- Jinliang Lin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Wingkei Ho
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Xing Qin
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Newterritories, Hong Kong, China
| | - Shun-Cheng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University Hong Kong, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Alimoradi H, Thomas A, Lyth DDB, Barzegar-Fallah A, Matikonda SS, Gamble AB, Giles GI. SMA-BmobaSNO: an intelligent photoresponsive nitric oxide releasing polymer for drug nanoencapsulation and targeted delivery. NANOTECHNOLOGY 2022; 33:195101. [PMID: 35078165 DOI: 10.1088/1361-6528/ac4eb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) is an important biological signalling molecule that acts to vasodilate blood vessels and change the permeability of the blood vessel wall. Due to these cardiovascular actions, co-administering NO with a therapeutic could enhance drug uptake. However current NO donors are not suitable for targeted drug delivery as they systemically release NO. To overcome this limitation we report the development of a smart polymer, SMA-BmobaSNO, designed to release NO in response to a photostimulus. The polymer's NO releasing functionality is an S-nitrosothiol group that, at 10 mg ml-1, is highly resistant to both thermal (t1/216 d) and metabolic (t1/232 h) decomposition, but rapidly brakes down under photoactivation (2700 W m-2, halogen source) to release NO (t1/225 min). Photoresponsive NO release from SMA-BmobaSNO was confirmed in a cardiovascular preparation, where irradiation resulted in a 12-fold decrease in vasorelaxation EC50(from 5.2μM to 420 nM). To demonstrate the polymer's utility for drug delivery we then used SMA-BmobaSNO to fabricate a nanoparticle containing the probe Nile Red (NR). The resulting SMA-BmobaSNO-NR nanoparticle exhibited spherical morphology (180 nm diameter) and sustained NR release (≈20% over 5 d). Targeted delivery was characterised in an abdominal preparation, where photoactivation (450 W m-2) caused localized increases in vasodilation and blood vessel permeability, resulting in a 3-fold increase in NR uptake into photoactivated tissue. Nanoparticles fabricated from SMA-BmobaSNO therefore display highly photoresponsive NO release and can apply the Trojan Horse paradigm by using endogenous NO signalling pathways to smuggle a therapeutic cargo into target tissue.
Collapse
Affiliation(s)
- Houman Alimoradi
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ansa Thomas
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel D B Lyth
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Gregory I Giles
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Huang M, Zhang J, Ke X, Gao S, Wu D, Chen J, Weng Y. Stearic acid modified nano CuMOFs used as a nitric oxide carrier for prolonged nitric oxide release. RSC Adv 2022; 12:2383-2390. [PMID: 35425263 PMCID: PMC8979339 DOI: 10.1039/d1ra08066k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) shows high potential in the cardiovascular system with anticoagulant and antibacterial efficacy. Cu based metal organic frameworks with amino modification (CuMOFs) were found to have an extraordinary high NO loading, but at the expense of framework stability in ambient moisture. Nano CuMOFs was synthesized by hydrothermal method in this work, and treated with stearic acid (SA) creating a hydrophobic form. It was found that the structure of the particles was not affected after treatment with SA, and the treated CuMOFs had tunable hydrophobicity. Both CuMOFs and SA modified CuMOFs adsorbed NO with the reaction of the amino group and NO to form a NONOate. SA modification enhanced stability of the CuMOFs in phosphate buffer solution (PBS, pH = 7.4), slowed down the interaction between the NO loading unit and H2O, and thus NO releasing was prolonged. The resulting NO-loaded CuMOFs inhibited platelet activation dramatically, prolonged the coagulation time and displayed excellent antibacterial properties. They could be envisioned as a good candidate for application in blood contacting implants. Nitric oxide (NO) shows high potential in the cardiovascular system with anticoagulant and antibacterial efficacy.![]()
Collapse
Affiliation(s)
- Maotao Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Jianwen Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Xianlan Ke
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd Chengdu PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd Chengdu PR China
| | - Junying Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University Chengdu PR China
| |
Collapse
|
12
|
Paul S, Pan S, Mukherjee A, De P. Nitric Oxide Releasing Delivery Platforms: Design, Detection, Biomedical Applications, and Future Possibilities. Mol Pharm 2021; 18:3181-3205. [PMID: 34433264 DOI: 10.1021/acs.molpharmaceut.1c00486] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gasotransmitters belong to the subfamily of endogenous gaseous signaling molecules, which find a wide range of biomedical applications. Among the various gasotransmitters, nitric oxide (NO) has an enormous effect on the cardiovascular system. Apart from this, NO showed a pivotal role in neurological, respiratory, and immunological systems. Moreover, the paradoxical concentration-dependent activities make this gaseous signaling molecule more interesting. The gaseous NO has negligible stability in physiological conditions (37 °C, pH 7.4), which restricts their potential therapeutic applications. To overcome this issue, various NO delivering carriers were reported so far. Unfortunately, most of these NO donors have low stability, short half-life, or low NO payload. Herein, we review the synthesis of NO delivering motifs, development of macromolecular NO donors, their advantages/disadvantages, and biological applications. Various NO detection analytical techniques are discussed briefly, and finally, a viewpoint about the design of polymeric NO donors with improved physicochemical characteristics is predicted.
Collapse
|
13
|
|
14
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
15
|
Zhang M, Qiao R, Hu J. Engineering Metal-Organic Frameworks (MOFs) for Controlled Delivery of Physiological Gaseous Transmitters. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1134. [PMID: 32521709 PMCID: PMC7353332 DOI: 10.3390/nano10061134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) comprising metal ions or clusters coordinated to organic ligands have become a class of emerging materials in the field of biomedical research due to their bespoke compositions, highly porous nanostructures, large surface areas, good biocompatibility, etc. So far, many MOFs have been developed for imaging and therapy purposes. The unique porous nanostructures render it possible to adsorb and store various substances, especially for gaseous molecules, which is rather challenging for other types of delivery vectors. In this review, we mainly focus on the recent development of MOFs for controlled release of three gaseous transmitters, namely, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Although these gaseous molecules have been known as air pollutants for a long time, much evidence has been uncovered regarding their important physiological functions as signaling molecules. These signaling molecules could be either physically absorbed onto or covalently linked to MOFs, allowing for the release of loaded signaling molecules in a spontaneous or controlled manner. We highlight the designing concept by selective examples and display their potential applications in many fields such as cancer therapy, wound healing, and anti-inflammation. We hope more effort could be devoted to this emerging fields to develop signaling molecule-releasing MOFs with practical applications.
Collapse
Affiliation(s)
- Mengdan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Science at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| |
Collapse
|
16
|
Pinto RV, Wang S, Tavares SR, Pires J, Antunes F, Vimont A, Clet G, Daturi M, Maurin G, Serre C, Pinto ML. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angew Chem Int Ed Engl 2020; 59:5135-5143. [DOI: 10.1002/anie.201913135] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Rosana V. Pinto
- CERENA.Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Sujing Wang
- Institut des Matériaux Poreux de Paris, UMR 8004 CNRSEcole Normale SupérieureEcole Supérieure de Physique et de Chimie Industrielles de ParisPSL University 75005 Paris France
- Current address: Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei China
| | - Sergio R. Tavares
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - João Pires
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Fernando Antunes
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Alexandre Vimont
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Guillaume Clet
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Marco Daturi
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR 8004 CNRSEcole Normale SupérieureEcole Supérieure de Physique et de Chimie Industrielles de ParisPSL University 75005 Paris France
| | - Moisés L. Pinto
- CERENA.Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
| |
Collapse
|
17
|
Pinto RV, Wang S, Tavares SR, Pires J, Antunes F, Vimont A, Clet G, Daturi M, Maurin G, Serre C, Pinto ML. Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rosana V. Pinto
- CERENA.Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Sujing Wang
- Institut des Matériaux Poreux de Paris, UMR 8004 CNRSEcole Normale SupérieureEcole Supérieure de Physique et de Chimie Industrielles de ParisPSL University 75005 Paris France
- Current address: Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei China
| | - Sergio R. Tavares
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - João Pires
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Fernando Antunes
- Centro de Química e Bioquímica e CQEFaculdade de CiênciasUniversidade de Lisboa 1749-016 Lisboa Portugal
| | - Alexandre Vimont
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Guillaume Clet
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Marco Daturi
- Normandie Univ, ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie 14000 Caen France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier UMR 5253 CNRSUniversité de Montpellier Place E. Bataillon 34095 Montpellier Cedex 05 France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR 8004 CNRSEcole Normale SupérieureEcole Supérieure de Physique et de Chimie Industrielles de ParisPSL University 75005 Paris France
| | - Moisés L. Pinto
- CERENA.Departamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa 1049-001 Lisboa Portugal
| |
Collapse
|
18
|
Carné-Sánchez A, Carmona FJ, Kim C, Furukawa S. Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chem Commun (Camb) 2020; 56:9750-9766. [DOI: 10.1039/d0cc03740k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review highlights the strategies employed to load and release gasotransmitters such as NO, CO and H2S from different kinds of porous materials, including zeolites, mesoporous silica, metal–organic frameworks and protein assemblies.
Collapse
Affiliation(s)
- Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
| | - Francisco J. Carmona
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
| | - Chiwon Kim
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto
- Japan
- Department of Synthetic Chemistry and Biological Chemistry
| |
Collapse
|
19
|
Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707634. [PMID: 29971835 PMCID: PMC6586248 DOI: 10.1002/adma.201707634] [Citation(s) in RCA: 426] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/01/2018] [Indexed: 05/03/2023]
Abstract
Nanotechnology has played an important role in drug delivery and biomedical imaging over the past two decades. In particular, nanoscale metal-organic frameworks (nMOFs) are emerging as an important class of biomedically relevant nanomaterials due to their high porosity, multifunctionality, and biocompatibility. The high porosity of nMOFs allows for the encapsulation of exceptionally high payloads of therapeutic and/or imaging cargoes while the building blocks-both ligands and the secondary building units (SBUs)-can be utilized to load drugs and/or imaging agents via covalent attachment. The ligands and SBUs of nMOFs can also be functionalized for surface passivation or active targeting at overexpressed biomarkers. The metal ions or metal clusters on nMOFs also render them viable candidates as contrast agents for magnetic resonance imaging, computed tomography, or other imaging modalities. This review article summarizes recent progress on nMOF designs and their exploration in biomedical areas. First, the therapeutic applications of nMOFs, based on four distinct drug loading strategies, are discussed, followed by a summary of nMOF designs for imaging and biosensing. The review is concluded by exploring the fundamental challenges facing nMOF-based therapeutic, imaging, and biosensing agents. This review hopefully can stimulate interdisciplinary research at the intersection of MOFs and biomedicine.
Collapse
Affiliation(s)
- Kuangda Lu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Theint Aung
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
20
|
Abstract
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
21
|
Hao J, Xu X, Fei H, Li L, Yan B. Functionalization of Metal-Organic Frameworks for Photoactive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705634. [PMID: 29388716 DOI: 10.1002/adma.201705634] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks (MOFs) are intriguing platforms with multiple functionalities. Additional functionalization of MOFs generates novel materials for various applications. Here, three main topics are examined regarding the functionalization of MOFs for use as photoactive materials. The first is chemical approaches for postsynthetic modification of the metal clusters and organic linkers in MOFs; that is, sites on pore surfaces and chemical trapping of photoactive moieties within the pores, which create materials with chemical functionalities for water splitting and CO2 reduction by light. The second topic focuses on the functionalization of MOFs for photochemical response and the versatile applications of such materials. State-of-the-art research on functionalizing MOFs through photochemical reactions on the pore surface and within the pores as guests is also summarized. The third topic introduces the functionalization of MOFs for photofunctional materials, including photoluminescent tuning and integration, photoluminescent LED devices and barcodes, and photophysical applications for chemical sensing. Finally, conclusions and perspectives on the fields are given.
Collapse
Affiliation(s)
- Jina Hao
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Xiaoyu Xu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Liangchun Li
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
22
|
Haikal RR, Hua C, Perry JJ, O'Nolan D, Syed I, Kumar A, Chester AH, Zaworotko MJ, Yacoub MH, Alkordi MH. Controlling the Uptake and Regulating the Release of Nitric Oxide in Microporous Solids. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43520-43528. [PMID: 29182298 DOI: 10.1021/acsami.7b15095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Representative compounds from three classes of microporous solids, namely, metal-organic frameworks (MOFs), hybrid ultra-microporous materials (HUMs), and porous-organic polymers (POPs), were investigated for their nitric oxide gas uptake and release behavior. Low-pressure sorption studies indicated strong chemisorption of NO on the free amine groups decorating the MOF UiO-66-NH2 when compared to its non-amine-functionalized parent. The HUMs demonstrated reversible physisorption within the low-pressure regime, but interestingly in one case there was evidence for chemisorption following pressurization with NO at 10 bar. Significant release of chemisorbed NO from the UiO-66-NH2 and one of the HUMs was triggered by addition of acid to the medium, a pH change from 7.4 to 5.4 being sufficient to trigger NO release. An imidazole-based POP exhibited chemisorption of NO at high pressure wherein the ring basicity facilitated both NO uptake and spontaneous release upon contact with the aqueous release medium.
Collapse
Affiliation(s)
- Rana R Haikal
- Center for Materials Science, Zewail City of Science and Technology , Sheikh Zayed Dist., 12588 Giza, Egypt
| | - Carol Hua
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - John J Perry
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - Daniel O'Nolan
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - Imran Syed
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - Amrit Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - Adrian H Chester
- Heart Science Centre, Imperial College , Harefield, Uxbridge UB9 6JH, United Kingdom
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick , Limerick V94 T9PX, Ireland
| | - Magdi H Yacoub
- Heart Science Centre, Imperial College , Harefield, Uxbridge UB9 6JH, United Kingdom
| | - Mohamed H Alkordi
- Center for Materials Science, Zewail City of Science and Technology , Sheikh Zayed Dist., 12588 Giza, Egypt
| |
Collapse
|
23
|
Mendt M, Barth B, Hartmann M, Pöppl A. Low-temperature binding of NO adsorbed on MIL-100(Al)—A case study for the application of high resolution pulsed EPR methods and DFT calculations. J Chem Phys 2017; 147:224701. [DOI: 10.1063/1.4995551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Matthias Mendt
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Benjamin Barth
- Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Martin Hartmann
- Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Andreas Pöppl
- Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
24
|
|
25
|
Pal HA, Mohapatra S, Gupta V, Ghosh S, Verma S. Self-assembling soft structures for intracellular NO release and promotion of neurite outgrowth. Chem Sci 2017; 8:6171-6175. [PMID: 28989648 PMCID: PMC5627600 DOI: 10.1039/c6sc05017d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 06/19/2017] [Indexed: 12/03/2022] Open
Abstract
Nitric oxide (NO), an endogenously produced free radical species, is an extremely important signalling molecule in several biochemical processes related to neurotransmission, neuronal communication, and vasodilation, to name a few. Other than relying on endogenous synthesis, intracellular NO delivery presents an interesting challenge to fully exploit the therapeutic potential of this gaseous molecule. We have applied a self-assembling peptide conjugate strategy to devise a construct carrying a NO-release arm, which can be activated under standard redox conditions. Consequently, a tryptophan-based peptide carrier was designed, which self-assembled in the solution phase to afford soft nanospherical structures, and released NO in Neuro2a cell line, resulting in neurite outgrowth.
Collapse
Affiliation(s)
- Hilal Ahmad Pal
- Department of Chemistry and Center for Environmental Science and Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , UP , India .
| | - Saswat Mohapatra
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Varsha Gupta
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Surajit Ghosh
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology Kolkata , 4, Raja S. C. Mullick Road , Jadavpur 700032 , WB , India
| | - Sandeep Verma
- Department of Chemistry and Center for Environmental Science and Engineering , Indian Institute of Technology Kanpur , Kanpur 208016 , UP , India .
| |
Collapse
|
26
|
Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak WJ. Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 2017; 123:172-183. [DOI: 10.1016/j.biomaterials.2017.01.025] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/12/2016] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
|
27
|
Diring S, Carné-Sánchez A, Zhang J, Ikemura S, Kim C, Inaba H, Kitagawa S, Furukawa S. Light responsive metal-organic frameworks as controllable CO-releasing cell culture substrates. Chem Sci 2017; 8:2381-2386. [PMID: 28451343 PMCID: PMC5364997 DOI: 10.1039/c6sc04824b] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/21/2016] [Indexed: 01/27/2023] Open
Abstract
A new carbon monoxide (CO)-releasing material has been developed by embedding a manganese carbonyl complex, MnBr(bpydc)(CO)3 (bpydc = 5,5'-dicarboxylate-2,2'-bipyridine) into a highly robust Zr(iv)-based metal-organic framework (MOF). Efficient and controllable CO-release was achieved under exposure to low intensity visible light. Size-controllable nanocrystals of the photoactive MOF were obtained and their CO-releasing properties were correlated with their crystal sizes. The photoactive crystals were processed into cellular substrates with a biocompatible polymer matrix, and the light-induced delivery of CO and its subsequent cellular uptake were monitored using a fluorescent CO-probe. The results discussed here demonstrate a new opportunity to use MOFs as macromolecular scaffolds towards CO-releasing materials and the advantage of MOFs for high CO payloads, which is essential in future therapeutic applications.
Collapse
Affiliation(s)
- Stéphane Diring
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
| | - Arnau Carné-Sánchez
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
| | - JiCheng Zhang
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Shuya Ikemura
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Chiwon Kim
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Hiroshi Inaba
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
- Department of Synthetic Chemistry and Biological Chemistry , Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida, Sakyo-ku , Kyoto 606-8501 , Japan . ;
| |
Collapse
|
28
|
Xiang HJ, Guo M, Liu JG. Transition-Metal Nitrosyls for Photocontrolled Nitric Oxide Delivery. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601135] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hui-Jing Xiang
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Min Guo
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| | - Jin-Gang Liu
- School of Chemistry and Molecular Engineering; East China University of Science and Technology; 200237 Shanghai P. R. China
| |
Collapse
|
29
|
Cattaneo D, Warrender SJ, Duncan MJ, Kelsall CJ, Doherty MK, Whitfield PD, Megson IL, Morris RE. Tuning the nitric oxide release from CPO-27 MOFs. RSC Adv 2016; 6:14059-14067. [PMID: 27019705 PMCID: PMC4786954 DOI: 10.1039/c5ra24023a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/17/2016] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide release from CPO-27 MOFs and the resulting coronary artery relaxation response are tuned by isomorphous substitution of Ni into the MOF framework.
Nitric oxide (NO) storage and release measurements have been recorded for Ni-doped CPO-27 (Mg) and CPO-27 (Zn), and the biological effect of the released NO was assessed in porcine coronary artery relaxation tests. The results indicate that the doping strategy leads to increased levels of NO storage and delivery compared to the parent materials and that the NO dosage and biological response can be tuned via this approach to suit the requirements of particular applications.
Collapse
Affiliation(s)
- Damiano Cattaneo
- School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK.
| | - Stewart J Warrender
- School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK.
| | - Morven J Duncan
- School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK.
| | - Christopher J Kelsall
- Department of Diabetes & Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, IV2 3JH, Scotland, UK
| | - Mary K Doherty
- Department of Diabetes & Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, IV2 3JH, Scotland, UK
| | - Phillip D Whitfield
- Department of Diabetes & Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, IV2 3JH, Scotland, UK
| | - Ian L Megson
- Department of Diabetes & Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, Inverness, IV2 3JH, Scotland, UK
| | - Russell E Morris
- School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, UK.
| |
Collapse
|
30
|
Ricco R, Pfeiffer C, Sumida K, Sumby CJ, Falcaro P, Furukawa S, Champness NR, Doonan CJ. Emerging applications of metal–organic frameworks. CrystEngComm 2016. [DOI: 10.1039/c6ce01030j] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal–organic frameworks are highly crystalline porous materials which present emerging opportunities in biotechnology, catalysis, microelectronics and photonics.
Collapse
Affiliation(s)
- Raffaele Ricco
- Institute of Physical and Theoretical Chemistry
- Technical University Graz
- 8010 Graz, Austria
| | - Constance Pfeiffer
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham NG7 2RD, UK
| | - Kenji Sumida
- Department of Chemistry
- School of Physical Sciences
- The University of Adelaide
- Adelaide, Australia
| | - Christopher J. Sumby
- Department of Chemistry
- School of Physical Sciences
- The University of Adelaide
- Adelaide, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry
- Technical University Graz
- 8010 Graz, Austria
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)
- Kyoto University
- Kyoto 606-8501, Japan
| | - Neil R. Champness
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham NG7 2RD, UK
| | - Christian J. Doonan
- Department of Chemistry
- School of Physical Sciences
- The University of Adelaide
- Adelaide, Australia
| |
Collapse
|