1
|
Zhu Y, Li Z, Zhong X, Wu X, Lu Y, Khan MA, Li H. Coordination Patterns of the Diphosphate in IDP Coordination Complexes: Crystal Structure and Chirality. Inorg Chem 2022; 61:19425-19439. [DOI: 10.1021/acs.inorgchem.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuan Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongqiu Lu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Zhu Y, Li Z, Song W, Khan MA, Li H. Conformation Locking of the Pentose Ring in Nucleotide Monophosphate Coordination Polymers via π-π Stacking and Metal-Ion Coordination. Inorg Chem 2022; 61:818-829. [PMID: 34856096 DOI: 10.1021/acs.inorgchem.1c02356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The conformation of the pentose ring in nucleotides is extremely important and a basic problem in biochemistry and pharmaceutical chemistry. In this study, we used a strategy to regulate the conformation of pentose rings of nucleotides via the synergistic effect of metal-ion coordination and π-π stacking. Seven types of coordination complexes were developed and characterized using Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. On the basis of two conformational parameters obtained from single-crystal structure analysis, i.e., the pseudorotation phase angle and degree of puckering, the exact conformation of the furanose ring in these coordination polymers was unequivocally determined. Crystallographic studies demonstrate that a short bridging ligand (4,4'-bipyridine) is conducive to the formation of a twist form, and long auxiliary ligands [1,2-bis(4-pyridyl)ethene and 4,4'-azopyridine] induce the formation of an envelope conformation. However, the longest auxiliary ligands [1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene] cannot limit the flexibility of a nucleotide. Our results demonstrated that the proposed strategy is universal and controllable. Moreover, the chirality of these coordination polymers was examined by combining the explanation of their crystal structures with solid-state circular dichroism spectroscopy measurements.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Bruno R, Mastropietro TF, De Munno G, Armentano D. A Nanoporous Supramolecular Metal-Organic Framework Based on a Nucleotide: Interplay of the π···π Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules 2021; 26:molecules26154594. [PMID: 34361760 PMCID: PMC8347718 DOI: 10.3390/molecules26154594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.
Collapse
|
4
|
Song WJ, Su H, Zhou P, Zhu YH, Khan MA, Song JB, Li H. Controllable synthesis of two adenosine 5'-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chirality. Dalton Trans 2021; 50:4713-4719. [PMID: 33729226 DOI: 10.1039/d1dt00133g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of Cu(ii)-AMP-4,4'-bipy coordination polymers, {[Cu(AMP)(4,4'-bipy)(H2O)3]·5H2O}n (1) and {[Cu2(HAMP)2(4,4'-bipy)2(H2O)4]·2NO3·11H2O}n (2) (Na2AMP = adenosine 5'-monophosphate disodium salt), were synthesised through pH control. X-ray single-crystal diffraction analysis revealed that 1 and 2 are one-dimensional (1D) coordinating coordination polymers. The nucleotide in 1 was not protonated whereas that in 2 was protonated. With the protonated NO3- in 2 entering the crystal lattice, it plays a role in balancing the charge. The chirality was studied using solid-state circular dichroism (CD) spectroscopy based on the analysis of crystal structures.
Collapse
Affiliation(s)
- Wen-Jing Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Kumar A, Priyanka P. Environmentally benign pH-responsive cytidine-5′-monophosphate molecule-mediated akaganeite (5′-CMP-β-FeOOH) soft supramolecular hydrogels induced by the puckering of ribose sugar with efficient loading/release capabilities. NEW J CHEM 2019. [DOI: 10.1039/c9nj02949d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel synthetic protocol for environmentally benign 5′-CMP-β-FeOOH soft hydrogels exhibiting a rapid pH-responsive reversible sol–gel transition, efficient adsorption and slow release capabilities is reported.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Priyanka Priyanka
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
6
|
Bruno R, Marino N, Adduci R, Armentano D, De Munno G. Cu(II) complexes of cytosine and 1-methylcytosine with bromide: old motifs and new structures. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1441406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rosaria Bruno
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| | - Nadia Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| | - Rosanna Adduci
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Cosenza, Italy
| |
Collapse
|
7
|
Qiu QM, Gu L, Ma H, Yan L, Liu M, Li H. Double layer zinc–UDP coordination polymers: structure and properties. Dalton Trans 2018; 47:14174-14178. [DOI: 10.1039/c8dt01537f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Double layer Zn–UDP coordination polymers with potentially open sites can be used for heterogeneous fluorescent sensors of amino acids.
Collapse
Affiliation(s)
- Qi-ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Leilei Gu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hongwei Ma
- Analytical and Testing Centre
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Li Yan
- Analytical and Testing Centre
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
8
|
Qiu QM, Zhou P, Gu L, Hao L, Liu M, Li H. Cytosine-Cytosine Base-Pair Mismatch and Chirality in Nucleotide Supramolecular Coordination Complexes. Chemistry 2017; 23:7201-7206. [PMID: 28370519 DOI: 10.1002/chem.201700930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 12/11/2022]
Abstract
The base-pair sequences are the foundation for the biological processes of DNA or RNA, and base-pair mismatch is very important to reveal genetic diseases and DNA rearrangements. However, the lack of well-defined structural information about base-pair mismatch is obstructing the investigation of this issue. The challenge is to crystallize the materials containing the base-pair mismatch. Engineering the small-molecule mimics or model is an effective strategy to solve this issue. Here, six cytidine-5'-monophosphate (CMP) and 2'-deoxycytidine-5'-monophosphate (dCMP) coordination polymers were reported containing cytosine-cytosine base-pair mismatch (i-motif), and their single-crystal structures and chiralities were studied. The precise control over the formation of the i-motif was demonstrated, in which the regulating of supramolecular interactions was achieved based on molecular design. In addition, the chiralities of these coordination polymers were investigated according to their crystal structures and solution- and solid-state circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Qi-Ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Pei Zhou
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Leilei Gu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liang Hao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
9
|
Assembly of five coordination polymers based on 5,11,17,23-tetra-tert-butyl-25-(carboxymethoxy)-calix[4]arene ligand. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6366-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Gu L, Qiu QM, Zhou P, Hao L, Liu M, Li H. Unusual crystal structure and chirality of uridine 5′-monophosphate coordination polymer. RSC Adv 2017. [DOI: 10.1039/c7ra00851a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The auxiliary ligand effect in the structure and charility of uridine 5′-monophosphate coordination polymer was investigated.
Collapse
Affiliation(s)
- Leilei Gu
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Qi-ming Qiu
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Pei Zhou
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Liang Hao
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Minghua Liu
- National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Hui Li
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|