1
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113421. [PMID: 35684359 PMCID: PMC9181914 DOI: 10.3390/molecules27113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Correspondence: (A.V.); (P.R.V.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence: (A.V.); (P.R.V.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
| |
Collapse
|
2
|
Payne MT, Neumann CN, Stavitski E, Dincǎ M. Complexes of Platinum Group Metals with a Conformationally Locked Scorpionate in a Metal-Organic Framework: An Unusually Close Apical Interaction of Palladium(II). Inorg Chem 2021; 60:11764-11774. [PMID: 34251817 DOI: 10.1021/acs.inorgchem.1c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report synthetic strategies for installing platinum group metals (PGMs: Pd, Rh, Ir, and Pt) on a scorpionate-derived linker (TpmC*) within a metal-organic framework (MOF), both by room-temperature postsynthetic metalation and by direct solvothermal synthesis, with a wide range of metal loadings relevant for fundamental studies and catalysis. In-depth studies for the palladium adduct Pd(II)@Zr-TpmC* by density-functional-theory-assisted extended X-ray absorption fine structure spectroscopy reveals that the rigid MOF lattice enforces a close Pd(II)-Napical interaction between the bidentate palladium complex and the third uncoordinated pyrazole arm of the TpmC* ligand (Pd-Napical = 2.501 ± 0.067 Å), an interaction that is wholly avoided in molecular palladium scorpionates.
Collapse
Affiliation(s)
- Michael T Payne
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Constanze N Neumann
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eli Stavitski
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory (BNL), Upton, New York 11973, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Suter R, Gilliard RJ, Iskandarov J, Benkő Z, Wörle M, Grützmacher H. Anionic 1-Aza-3,4-diphospholides as redox active ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Kozáček P, Dostál L, Hejda M, Mikysek T, Růžička A, Erben M. Synthesis and properties of 1,2,3-diazapnictol-5-yl substituted ferrocenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj02666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new ferrocene derivatives bearing 1,2,3-diazapnictolyl substituents were synthesised and their spectroscopic and electrochemical properties were studied.
Collapse
Affiliation(s)
- Pavel Kozáček
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Milan Erben
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
5
|
Suter R, Wagner M, Querci L, Conti R, Benkő Z, Grützmacher H. 1,3,4-Azadiphospholides as building blocks for scorpionate and bidentate ligands in multinuclear complexes. Dalton Trans 2020; 49:8201-8208. [PMID: 32501468 DOI: 10.1039/d0dt01864c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Annulated oxy-substituted 1,3,4-azadiphospholides such as the anion in Na[1] are readily accessible phosphorus heterocycles made from the phosphaethynolate anion (OCP)- and 2-chloropyridines. The sodium salt Na[1] reacts with oxophilic element halides such as OPCl3, PhSiCl3, PhBCl2 and CpTiCl3 at room temperature to form exclusively the oxygen bound tris-substituted compounds E(1)3 (with E = OP, PhSi, PhB- or CpTi). Six equivalents of Na[1] with group four metal chlorides MCl4 (M = Ti, Zr, Hf) form cleanly the hexa-substituted dianions (Na2[M(1)6]) which are isolated in excellent yields. The titanium complexes are deeply coloured species due to ligand to metal charge transfer (LMCT) excitations. In all complexes, the phosphorus atoms of the azadiphosphole moieties are able to coordinate to a soft metal center as shown in their reactions with [Mo(CO)3Mes], yielding complexes in which the Mo(CO)3 binds in a fac manner. Functionalization of the oxy group with amino phosphanes allows isolation of tridentate ligands, which have been used as synthons for macrocyclic molybdenum carbonyl complexes.
Collapse
Affiliation(s)
- Riccardo Suter
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
6
|
Kozáček P, Dostál L, Růžička A, Císařová I, Černošek Z, Erben M. Synthesis and coordination properties of new σ 2,λ 3-P/N switchable chelators based on [1,2,3]-diazaphosphole. NEW J CHEM 2019. [DOI: 10.1039/c9nj03146d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New ligands with σ2,λ3-P/N switching ability were synthesised and their coordination properties toward transition metals were studied.
Collapse
Affiliation(s)
- Pavel Kozáček
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 532 10 Pardubice
- Czech Republic
| | - Libor Dostál
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 532 10 Pardubice
- Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 532 10 Pardubice
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University in Prague
- Prague 2
- Czech Republic
| | - Zdeněk Černošek
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 532 10 Pardubice
- Czech Republic
| | - Milan Erben
- Department of General and Inorganic Chemistry
- Faculty of Chemical Technology
- University of Pardubice
- 532 10 Pardubice
- Czech Republic
| |
Collapse
|
7
|
Frański R, Onyszkiewicz M, Gierczyk B. Scorpionate complexes of aza-18-crown-6 containing fluoronitrophenyl substituents as studied by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1279-1289. [PMID: 28548314 DOI: 10.1002/rcm.7908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Coordination of a metal cation by a nitro group is rare and the interaction between them is usually weak. Examples of complexes in which such an interaction takes place are metal complexes of cyclams containing nitrophenyl or nitrobenzyl substituents. It seemed to be interesting to check if in the complexes of the respective crown ether conjugates the interaction can also take place. METHODS We synthesized the respective conjugates of aza-18-crown-6, namely fluoro-substituted N-nitrophenylaza-18C6 conjugates. Their complexes with alkali and alkali earth metal cations were generated in the gas phase by electrospray ionization mass spectrometry (ESI-MS). Both collision-induced dissociation 'in-source' and collision-induced dissociation tandem mass spectrometry (ESI-CID-'in-source' and ESI-CID-MS/MS) were used to study the gas-phase stabilities of the generated complexes. RESULTS The gas-phase decomposition of the studied complexes indicated that the complexes formed by the conjugates containing a nitro group at the ortho position are more stable than those formed by the conjugates with a nitro group at the para position. CONCLUSIONS This indicates that a metal cation complexed by crown ether ring is additionally coordinated by a nitro group in the scorpionate mode. To the best of our knowledge, our finding provide the first example of a complex in which a metal cation complexed by a crown ether ring is additionally coordinated by a nitro group.
Collapse
Affiliation(s)
- Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | | | - Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Mlateček M, Dostál L, Růžičková Z, Erben M. The new coordination modes of bis(1,2,4-diazaphospholyl)methane. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Pettinari C, Pettinari R, Marchetti F. Golden Jubilee for Scorpionates. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2016. [DOI: 10.1016/bs.adomc.2016.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|