1
|
Silva PBVD, Brenelli LB, Mariutti LRB. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis. Food Res Int 2023; 169:112838. [PMID: 37254412 DOI: 10.1016/j.foodres.2023.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
Food loss and waste are severe social, economic, and environmental issues. An example is the incorrect handling of waste or by-products used to obtain bioactive compounds, such as carotenoids. This review aimed to present a comprehensive overview of research on lycopene, phytoene, and phytofluene obtained from waste and by-products. In this study, an integrative literature approach was coupled with bibliometric analysis to provide a broad perspective of the topic. PRISMA guidelines were used to search studies in the Web of Science database systematically. Articles were included if (1) employed waste or by-products to obtain lycopene, phytoene, and phytofluene or (2) performed applications of the carotenoids previously extracted from waste sources. Two hundred and four articles were included in the study, and the prevalent theme was research on the recovery of lycopene from tomato processing. However, the scarcity of studies on colorless carotenoids (phytoene and phytofluene) was evidenced, although these are generally associated with lycopene. Different technologies were used to extract lycopene from plant matrices, with a clear current trend toward choosing environmentally friendly alternatives. Microbial production of carotenoids from various wastes is a highly competitive alternative to conventional processes. The results described here can guide future forays into the subject, especially regarding research on phytoene and phytofluene, potential and untapped sources of carotenoids from waste and by-products, and in choosing more efficient, safe, and environmentally sustainable extraction protocols.
Collapse
Affiliation(s)
- Pedro Brivaldo Viana da Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil
| | | | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Fernández-Crespo E, Liu-Xu L, Albert-Sidro C, Scalschi L, Llorens E, González-Hernández AI, Crespo O, Gonzalez-Bosch C, Camañes G, García-Agustín P, Vicedo B. Exploiting Tomato Genotypes to Understand Heat Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2022; 11:3170. [PMID: 36432899 PMCID: PMC9696584 DOI: 10.3390/plants11223170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Increased temperatures caused by climate change constitute a significant threat to agriculture and food security. The selection of improved crop varieties with greater tolerance to heat stress is crucial for the future of agriculture. To overcome this challenge, four traditional tomato varieties from the Mediterranean basin and two commercial genotypes were selected to characterize their responses at high temperatures. The screening of phenotypes under heat shock conditions allowed to classify the tomato genotypes as: heat-sensitive: TH-30, ADX2; intermediate: ISR-10 and Ailsa Craig; heat-tolerant: MM and MO-10. These results reveal the intra-genetical variation of heat stress responses, which can be exploited as promising sources of tolerance to climate change conditions. Two different thermotolerance strategies were observed. The MO-10 plants tolerance was based on the control of the leaf cooling mechanism and the rapid RBOHB activation and ABA signaling pathways. The variety MM displayed a different strategy based on the activation of HSP70 and 90, as well as accumulation of phenolic compounds correlated with early induction of PAL expression. The importance of secondary metabolism in the recovery phase has been also revealed. Understanding the molecular events allowing plants to overcome heat stress constitutes a promising approach for selecting climate resilient tomato varieties.
Collapse
Affiliation(s)
- Emma Fernández-Crespo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Luisa Liu-Xu
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Carlos Albert-Sidro
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Loredana Scalschi
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Eugenio Llorens
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Ana Isabel González-Hernández
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Oscar Crespo
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Carmen Gonzalez-Bosch
- Departament de Bioquímica, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Universitat de València, 46980 Valencia, Spain
| | - Gemma Camañes
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| | - Begonya Vicedo
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Biología, Bioquímica y Ciencias Naturales, ESTCE, Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
3
|
Meng F, Li Y, Li S, Chen H, Shao Z, Jian Y, Mao Y, Liu L, Wang Q. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Tomato pomace waste as safe feed additive for poultry health and production – a review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Tomato cultivation and industrial processing produce a considerable amount of tomato pomace, peels, and seeds, which are difficult to handle. These by-products contain a variety of minerals and bioactive substances, and may thus be further valorized, generating additional revenue for processing plants while also decreasing environmental issues caused by their buildup. The inclusion of tomato pomace in poultry feed has been shown to produce promising effects in poultry growth and health, however the results are largely inconsistent. Literature has documented improvement in growth, egg production and quality, immunological and antioxidant effects in poultry. This review has complied the impacts of tomato pomace on the growth and health indices of poultry.
Collapse
|
5
|
Ilahy R, Tlili I, Pék Z, Montefusco A, Daood H, Azam M, Siddiqui MW, R'him T, Durante M, Lenucci MS, Helyes L. Effect of Individual and Selected Combined Treatments With Saline Solutions and Spent Engine Oil on the Processing Attributes and Functional Quality of Tomato (Solanum lycopersicon L.) Fruit: In Memory of Professor Leila Ben Jaballah Radhouane (1958–2021). Front Nutr 2022; 9:844162. [PMID: 35571925 PMCID: PMC9097875 DOI: 10.3389/fnut.2022.844162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with β-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Zoltán Pék
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| | - Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
| | - Hussein Daood
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| | - Mohamed Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Thouraya R'him
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Miriana Durante
- Istituto di Scienze Delle Produzioni Alimentari (ISPA)-CNR, Lecce, Italy
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Lecce, Italy
- *Correspondence: Marcello Salvatore Lenucci
| | - Lajos Helyes
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, Gödöllo, Hungary
| |
Collapse
|
6
|
Montefusco A, Durante M, Migoni D, De Caroli M, Ilahy R, Pék Z, Helyes L, Fanizzi FP, Mita G, Piro G, Lenucci MS. Analysis of the Phytochemical Composition of Pomegranate Fruit Juices, Peels and Kernels: A Comparative Study on Four Cultivars Grown in Southern Italy. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112521. [PMID: 34834884 PMCID: PMC8621565 DOI: 10.3390/plants10112521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/12/2023]
Abstract
The increasing popularity of pomegranate (Punica granatum L.), driven by the awareness of its nutraceutical properties and excellent environmental adaptability, is promoting a global expansion of its production area. This investigation reports the variability in the weight, moisture, pH, total soluble solids, carbohydrates, organic acids, phenolic compounds, fatty acids, antioxidant activities, and element composition of different fruit parts (juices, peels, and kernels) from four (Ako, Emek, Kamel, and Wonderful One) of the most widely cultivated Israeli pomegranate varieties in Salento (South Italy). To the best of our knowledge, this is the first systematic characterization of different fruit parts from pomegranate cultivars grown simultaneously in the same orchard and subjected to identical agronomic and environmental conditions. Significant genotype-dependent variability was observed for many of the investigated parameters, though without any correlation among fruit parts. The levels of phenols, flavonoids, anthocyanins, and ascorbic and dehydroascorbic acids of all samples were higher than the literature-reported data, as was the antioxidant activity. This is likely due to positive interactions among genotypes, the environment, and good agricultural practices. This study also confirms that pomegranate kernels and peels are, respectively, rich sources of punicic acid and phenols together, with several other bioactive molecules. However, the variability in their levels emphasizes the need for further research to better exploit their agro-industrial potential and thereby increase juice-production chain sustainability. This study will help to assist breeders and growers to respond to consumer and industrial preferences and encourage the development of biorefinery strategies for the utilization of pomegranate by-products as nutraceuticals or value-added ingredients for custom-tailored supplemented foods.
Collapse
Affiliation(s)
- Anna Montefusco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Miriana Durante
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Danilo Migoni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana 1040, Tunisia;
| | - Zoltán Pék
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.P.); (L.H.)
| | - Lajos Helyes
- Horticultural Institute, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.P.); (L.H.)
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Giovanni Mita
- Istituto di Scienze delle Produzioni Alimentari (ISPA)-CNR, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.D.); (G.M.)
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.), Università del Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (A.M.); (D.M.); (M.D.C.); (F.P.F.); (G.P.)
| |
Collapse
|
7
|
Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed Pharmacother 2021; 142:112018. [PMID: 34449317 DOI: 10.1016/j.biopha.2021.112018] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
The processing of tomato fruit into puree, juices, ketchup, sauces, and dried powders generates a significant amount of waste in the form of tomato pomace, which includes seeds and skin. Tomato processing by-products, particularly seeds, are reservoirs of health-promoting macromolecules, such as proteins (bioactive peptides), carotenoids (lycopene), polysaccharides (pectin), phytochemicals (flavonoids), and vitamins (α-tocopherol). Health-promoting properties make these bioactive components suitable candidates for the development of novel food and nutraceutical products. This review comprehensively demonstrates the bioactive compounds of tomato seeds along with diverse biomedical activities of tomato seed extract (TSE) for treating cardiovascular ailments, neurological disorders, and act as antioxidant, anticancer, and antimicrobial agent. Utilization of bioactive components can improve the economic feasibility of the tomato processing industry and may help to reduce the environmental pollution generated by tomato by-products.
Collapse
|
8
|
Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem 2020; 315:126224. [DOI: 10.1016/j.foodchem.2020.126224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
9
|
Løvdal T, Droogenbroeck BV, Eroglu EC, Kaniszewski S, Agati G, Verheul M, Skipnes D. Valorization of Tomato Surplus and Waste Fractions: A Case Study Using Norway, Belgium, Poland, and Turkey as Examples. Foods 2019; 8:E229. [PMID: 31252678 PMCID: PMC6678325 DOI: 10.3390/foods8070229] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.
Collapse
Affiliation(s)
- Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068 Stavanger, Norway.
| | - Bart Van Droogenbroeck
- ILVO - Institute for Agricultural and Fisheries Research, Technology and Food Science Unit, 9090 Melle, Belgium.
| | - Evren Caglar Eroglu
- Department of Food Technology, Alata Horticultural Research Institute, 33740 Mersin, Turkey.
| | - Stanislaw Kaniszewski
- Department of Soil Science and Vegetable Cultivation, InHort - Research Institute of Horticulture, 96-100 Skierniewice, Poland.
| | - Giovanni Agati
- Consiglio Nazionale delle Ricerche, Istituto di Fisica Applicata 'Nello Carrara', 50019 Sesto Fiorentino, Italy.
| | - Michel Verheul
- NIBIO - Norwegian Institute of Bioeconomy Research, N-4353 Klepp Stasjon, Norway.
| | - Dagbjørn Skipnes
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068 Stavanger, Norway.
| |
Collapse
|
10
|
Ilahy R, Tlili I, Siddiqui MW, Hdider C, Lenucci MS. Inside and Beyond Color: Comparative Overview of Functional Quality of Tomato and Watermelon Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:769. [PMID: 31263475 PMCID: PMC6585571 DOI: 10.3389/fpls.2019.00769] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 05/15/2023]
Abstract
The quali-quantitative evaluation and the improvement of the levels of plant bioactive secondary metabolites are increasingly gaining consideration by growers, breeders and processors, particularly in those fruits and vegetables that, due to their supposed health promoting properties, are considered "functional." Worldwide, tomato and watermelon are among the main grown and consumed crops and represent important sources not only of dietary lycopene but also of other health beneficial bioactives. Tomato and watermelon synthesize and store lycopene as their major ripe fruit carotenoid responsible of their typical red color at full maturity. It is also the precursor of some characteristic aroma volatiles in both fruits playing, thus, an important visual and olfactory impact in consumer choice. While sharing the same main pigment, tomato and watermelon fruits show substantial biochemical and physiological differences during ripening. Tomato is climacteric while watermelon is non-climacteric; unripe tomato fruit is green, mainly contributed by chlorophylls and xanthophylls, while young watermelon fruit mesocarp is white and contains only traces of carotenoids. Various studies comparatively evaluated in vivo pigment development in ripening tomato and watermelon fruits. However, in most cases, other classes of compounds have not been considered. We believe this knowledge is fundamental for targeted breeding aimed at improving the functional quality of elite cultivars. Hence, in this paper, we critically review the recent understanding underlying the biosynthesis, accumulation and regulation of different bioactive compounds (carotenoids, phenolics, aroma volatiles, and vitamin C) during tomato and watermelon fruit ripening. We also highlight some concerns about possible harmful effects of excessive uptake of bioactive compound on human health. We found that a complex interweaving of anabolic, catabolic and recycling reactions, finely regulated at multiple levels and with temporal and spatial precision, ensures a certain homeostasis in the concentrations of carotenoids, phenolics, aroma volatiles and Vitamin C within the fruit tissues. Nevertheless, several exogenous factors including light and temperature conditions, pathogen attack, as well as pre- and post-harvest manipulations can drive their amounts far away from homeostasis. These adaptive responses allow crops to better cope with abiotic and biotic stresses but may severely affect the supposed functional quality of fruits.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Imen Tlili
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Bhagalpur, India
| | - Chafik Hdider
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Marcello Salvatore Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento (DiSTeBA), Lecce, Italy
| |
Collapse
|
11
|
Siddiqui MW, Lara I, Ilahy R, Tlili I, Ali A, Homa F, Prasad K, Deshi V, Lenucci MS, Hdider C. Dynamic Changes in Health-Promoting Properties and Eating Quality During Off-Vine Ripening of Tomatoes. Compr Rev Food Sci Food Saf 2018; 17:1540-1560. [PMID: 33350145 DOI: 10.1111/1541-4337.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022]
Abstract
Tomato (Solanum lycopersicon L.) fruit is rich in various nutrients, vitamins and health-promoting molecules. Fresh tomatoes are an important part of the Mediterranean gastronomy, and their consumption is thought to contribute substantially to the reduced incidence of some chronic diseases in the Mediterranean populations in comparison with those of other world areas. Unfortunately, tomato fruit is highly perishable, resulting in important economic losses and posing a challenge to storage, logistic and supply management. This review summarizes the current knowledge on some important health-promoting and eating quality traits of tomato fruits after harvest and highlights the existence of substantial cultivar-to-cultivar variation in the postharvest evolution of the considered traits according to maturity stage at harvest and in response to postharvest manipulations. It also suggests the need for adapting postharvest procedures to the characteristics of each particular genotype to preserve the optimal quality of the fresh product.
Collapse
Affiliation(s)
- Mohammed Wasim Siddiqui
- Dept. of Food Science and Postharvest Technology, Bihar Agricultural Univ., Sabour - 813210, Bhagalpur, Bihar, India
| | - Isabel Lara
- Dept. de Quı́mica, Unitat de Postcollita-XaRTA, Univ. de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Riadh Ilahy
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| | - Imen Tlili
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, The Univ. of Nottingham Malaysia Campus, Semenyih 43500, Selangor, Malaysia
| | - Fozia Homa
- Dept. of Statistics, Mathematics, and Computer Appplication, Bihar Agricultural University, Sabour - 813210, Bhagalpur, Bihar, India
| | - Kamlesh Prasad
- Dept. of Food Engineering and Technology, Sant Longowal Inst. of Engineering and Technology, Longowal - 148106, Punjab, India
| | - Vinayak Deshi
- Dept. of Food Science and Postharvest Technology, Bihar Agricultural Univ., Sabour - 813210, Bhagalpur, Bihar, India
| | - Marcello Salvatore Lenucci
- Dipt. di Scienze e Tecnologie Biologiche ed Ambientali, Univ. del Salento (DiSTeBA), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Chafik Hdider
- Lab. of Horticulture, Natl Agricultural Research Inst. of Tunisia (INRAT), Univ. of Carthage, Tunis, Rue Hédi Karray 2049 Ariana, Tunisia
| |
Collapse
|
12
|
Vallecilla-Yepez L, Ciftci ON. Increasing cis-lycopene content of the oleoresin from tomato processing byproducts using supercritical carbon dioxide. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Zhang TT, Hu T, Jiang JG, Zhao JW, Zhu W. Antioxidant and anti-inflammatory effects of polyphenols extracted from Ilex latifolia Thunb. RSC Adv 2018; 8:7134-7141. [PMID: 35540363 PMCID: PMC9078438 DOI: 10.1039/c7ra13569f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
To promote the rational and effective application of Ilex latifolia Thunb., a Chinese bitter tea widely consumed as a health beverage, polyphenols were extracted from its leaves and their cellular antioxidant activity (CAA) and anti-inflammatory effect against mouse macrophage RAW 264.7 cells were analyzed. Results showed that the antioxidant capacity of polyphenols was high, and their CAA values in PBS wash and no PBS wash protocols were 6871.42 ± 85.56 and 25161.61 ± 583.55 μmol QE (quercetin equivalents)/100 g phenolic extracts, respectively. In addition, polyphenols from I. latifolia displayed strong inhibition on LPS-induced NO-production in RAW 264.7 cells. Polyphenol treatment inhibited the release of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) induced by LPS in a dose-dependent manner by ELISA and mRNA expression analysis. Western blot results showed that the anti-inflammatory activity of polyphenols from I. latifolia might be exerted through inhibiting the activation of MAPKs (ERK and JNK) and NF-κB to decrease NO, COX-2 and pro-inflammatory cytokines production. Thus, the polyphenol enriched extracts from I. latifolia are a good source of natural antioxidants with a beneficial effect against inflammation, and they may be applied as a food supplement and/or functional ingredient.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Department of Food Science and Technology, South China University of Technology Guangzhou 510640 China +86 20 87113843 +86 20 87113849
- College of Food Science and Engineering, Ocean University of China Qingdao 266003 China
| | - Ting Hu
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Jian-Guo Jiang
- Department of Food Science and Technology, South China University of Technology Guangzhou 510640 China +86 20 87113843 +86 20 87113849
| | - Jing-Wen Zhao
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China +86 20 39318571 +86 20 39318571
| | - Wei Zhu
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine Guangzhou 510120 China +86 20 39318571 +86 20 39318571
| |
Collapse
|
14
|
Durante M, Montefusco A, Marrese PP, Soccio M, Pastore D, Piro G, Mita G, Lenucci MS. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.07.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Identification of drought-responsive microRNAs in tomato using high-throughput sequencing. Funct Integr Genomics 2017; 18:67-78. [PMID: 28956210 DOI: 10.1007/s10142-017-0575-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Drought is a major abiotic stress affecting crop productivity and quality. As a class of noncoding RNA, microRNA (miRNA) plays important roles in plant growth, development, and stress response. However, their response and roles in tomato drought stress is largely unknown. Here, by using high-throughput sequencing, we compared the miRNA profiles before and after drought treatment in two tomato genotypes: M82, a drought-sensitive cultivated tomato (Solanum lycopersicum), and IL2-5, a drought-tolerant introgression line derived from M82 and the tomato wild species S. pennellii (LA0716). A total of 108 conserved and 208 novel miRNAs were identified, among them, 32 and 68 were significantly changed in expression after stress. Further, 1936 putative target genes were predicted for those differentially-expressed miRNAs. Gene ontology and pathway analysis showed that many of the target genes were involved in stress resistance, such as genes in GO terms including response to stress, defense response, response to stimulus, phosphorylation, and signal transduction. Our results suggested that miRNAs play an essential role in the drought response of tomato. This work will help to further characterize specific miRNAs functioning in drought tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), and Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Pasqualone A, Gambacorta G, Summo C, Caponio F, Di Miceli G, Flagella Z, Marrese PP, Piro G, Perrotta C, De Bellis L, Lenucci MS. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem 2016; 213:545-553. [DOI: 10.1016/j.foodchem.2016.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 02/07/2023]
|
17
|
Gharbi S, Renda G, La Barbera L, Amri M, Messina CM, Santulli A. Tunisian tomato by-products, as a potential source of natural bioactive compounds. Nat Prod Res 2016; 31:626-631. [DOI: 10.1080/14786419.2016.1209671] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- S. Gharbi
- Département de Biologie, Université de Tunis, Tunis, Tunisie
| | - G. Renda
- Istituto di Biologia marina, Consorzio Universitario della Provincia di Trapani, Trapani, Italy
| | - L. La Barbera
- Istituto di Biologia marina, Consorzio Universitario della Provincia di Trapani, Trapani, Italy
| | - M. Amri
- Département de Biologie, Université de Tunis, Tunis, Tunisie
| | - C. M. Messina
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze della terra e del Mare DiSTeM, Università degli Studi di Palermo, Trapani, Italy
| | - A. Santulli
- Istituto di Biologia marina, Consorzio Universitario della Provincia di Trapani, Trapani, Italy
- Laboratorio di Biochimica Marina ed Ecotossicologia, Dipartimento di Scienze della terra e del Mare DiSTeM, Università degli Studi di Palermo, Trapani, Italy
| |
Collapse
|