1
|
Hanze M, Piper A, Hamedi MM. Stitched textile-based microfluidics for wearable devices. LAB ON A CHIP 2024; 25:28-40. [PMID: 39600207 PMCID: PMC11599943 DOI: 10.1039/d4lc00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Thread-based microfluidics, which rely on capillary forces in threads for liquid flow, are a promising alternative to conventional microfluidics, as they can be easily integrated into wearable textile-based biosensors. We present here advanced textile-based microfluidic devices fabricated by machine stitching, using only commercially available textiles. We stitch a polyester "Coolmax®" yarn with enhanced wicking abilities into both hydrophobic fabric and hydrophobically treated stretchable fabric, that serve as non-wicking substrates. In doing so we construct textile microfluidics capable of performing a wide variety of functions, including mixing and separation in 2D and 3D configurations. Furthermore, we integrate a stitched microfluidic device into a wearable T-shirt and show that this device can collect, transport, and detect sweat from the wearer's skin. These can also be machine-washed, making them inherently reusable. Finally, we integrate electrochemical sensors into the textile-based microfluidic devices using stitched gold-coated yarns to detect analytes in the microfluidic yarns. Our stitched textile-based microfluidic devices hold promise for wearable diagnostic applications. This novel, bottom-up fabrication using machine stitching is scalable, reproducible, low-cost, and compatible with the existing textile manufacturing industry.
Collapse
Affiliation(s)
- Martin Hanze
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| | - Andrew Piper
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
2
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
3
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Yadav S, Tawade P, Bachal K, Rakshe MA, Pundlik Y, Gandhi PS, Majumder A. Scalable large-area mesh-structured microfluidic gradient generator for drug testing applications. BIOMICROFLUIDICS 2022; 16:064103. [PMID: 36483022 PMCID: PMC9726219 DOI: 10.1063/5.0126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Microfluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method. In this method, ceramic suspension fluid was shaped into a square mesh by controlling Saffman Taylor instability in a multiport lifted Hele-Shaw cell (MLHSC). Using the shaped ceramic structure as the template, μCGG was prepared by soft lithography. The concentration gradient was characterized and effect of the flow rates was studied using COMSOL simulations. The simulation result was further validated by creating a fluorescein dye (fluorescein isothiocanate) gradient in the fabricated μCGG. To demonstrate the use of this device for drug testing, we created various concentrations of an anticancer drug-curcumin-using the device and determined its inhibitory concentration on cervical cancer cell-line HeLa. We found that the IC50 of curcumin for HeLa matched well with the conventional multi-well drug testing method. This method of μCGG fabrication has multiple advantages over conventional photolithography such as: (i) the channel layout and inlet-outlet arrangements can be changed by simply wiping the ceramic fluid before it solidifies, (ii) it is cost effective, (iii) large area patterning is easily achievable, and (iv) the method is scalable. This technique can be utilized to achieve a broad range of concentration gradient to be used for various biological and non-biological applications.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pratik Tawade
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ketaki Bachal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Makrand A. Rakshe
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yash Pundlik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasanna S. Gandhi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
5
|
Agustini D, Caetano FR, Quero RF, Fracassi da Silva JA, Bergamini MF, Marcolino-Junior LH, de Jesus DP. Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4830-4857. [PMID: 34647544 DOI: 10.1039/d1ay01337h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic devices based on textile threads have interesting advantages when compared to systems made with traditional materials, such as polymers and inorganic substrates (especially silicon and glass). One of these significant advantages is the device fabrication process, made more cheap and simple, with little or no microfabrication apparatus. This review describes the fundamentals, applications, challenges, and prospects of microfluidic devices fabricated with textile threads. A wide range of applications is discussed, integrated with several analysis methods, such as electrochemical, colorimetric, electrophoretic, chromatographic, and fluorescence. Additionally, the integration of these devices with different substrates (e.g., 3D printed components or fabrics), other devices (e.g., smartphones), and microelectronics is described. These combinations have allowed the construction of fully portable devices and consequently the development of point-of-care and wearable analytical systems.
Collapse
Affiliation(s)
- Deonir Agustini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Fábio Roberto Caetano
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | - Reverson Fernandes Quero
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
| | - José Alberto Fracassi da Silva
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| | - Márcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LABSENSE), Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Dosil Pereira de Jesus
- Institute of Chemistry, State University of Campinas (Unicamp), Campinas, SP, 13083-861, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCTBio), Campinas, SP, Brazil
| |
Collapse
|
6
|
Jangid AK, Pooja D, Jain P, Gupta N, Ramesan S, Kulhari H. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Adv 2021; 11:13928-13939. [PMID: 35423920 PMCID: PMC8697741 DOI: 10.1039/d1ra01574e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is an essential component of breast cancer therapy, but it is associated with serious side effects. Herein, a pluronic F68-based pH-responsive, and self-assembled nanomicelle system was designed to improve the delivery of paclitaxel (PTX) to breast cancer cells. Two pH-responsive pluronic F68-PTX conjugates i.e. succinoyl-linked conjugate (F68-SA-PTX) and cis-aconityl-linked conjugate (F68-CAA-PTX) were designed to respond the varying pH-environment in tumour tissue. Although both the linkers showed pH-sensitivity, the F68-CAA-PTX exhibited superior pH-sensitivity over the F68-SA-PTX and achieved a more selective release of PTX from the self-assembled nanomicelles. The prepared nanomicelles were characterized by dynamic light scattering, transmittance electron microscopy, differential scanning calorimetry and powder X-ray diffraction techniques. The anticancer activity of prepared nanomicelles and pure PTX were evaluated by 2D cytotoxicity assay against breast cancer cell line MDA-MB-231 and in the real tumour environments i.e. 3D tumor spheroids of MDA-MB-231 cells. The highest cytotoxicity effect of PTX was observed with F68-CAA-PTX nanomicelles followed by F68-SA-PTX and free PTX. Further, the F68-CAA-PTX nanomicelles also induced significant apoptosis with a combination of increase in ROS generation, decrease in the depolarisation of MMP and G2/M cell cycle arrest. These observed results provide a new insight for breast cancer treatment using pluronic nanomicelles.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Deep Pooja
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University 124 La Trobe Street 3000 Melbourne Australia
| | - Poonam Jain
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Nitin Gupta
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Shwathy Ramesan
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| |
Collapse
|
7
|
Khan JU, Sayyar S, Paull B, Innis PC. Novel Approach toward Electrofluidic Substrates Utilizing Textile-Based Braided Structure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45618-45628. [PMID: 32910632 DOI: 10.1021/acsami.0c13740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrofluidics is the unique combination of electrophoresis and microfluidics, which has opened up broad opportunities for bioanalysis and multiplexed assay. These systems typically comprise inaccessible and fully enclosed microcapillary or microchannels, with limited sample loading capacities and no direct access to the solutes within. Here, we investigate the application of multiyarn textile assemblies which provides an open and surface accessible electrophoretic separation platform. Three-dimensional (3D) textile structures have been produced using conventional knitting and braiding techniques from a range of commercially available yarns. Capillary zone electrophoresis separation studies have been carried out on these substrates using fluorescent anionic (fluorescence, FL) and cationic (rhodamine-B, Rh-B) markers. The effects of different yarn surface chemistry, textile fabrication technique, and electrolyte ionic strength on the electrophoretic mobility of the test analytes have been studied. From the broad range of yarns investigated, polyester was shown to have the highest electrophoretic mobility for Rh-B (6 × 10-4 cm2 V-1 s-1) and for FL (4 × 10-4 cm2 V-1 s-1). The braiding approach, being simple and versatile, was found to be the most effective route to produce 3D textile-based structures and offered the potential for selective movement and targeted delivery to different channels. Composite braids made with yarns of differential surface chemistries further revealed a unique behavior of separation and parallel movement of oppositely charged ionic species. We also demonstrate the feasibility to apply isotachophoresis (ITP) on these braided textile substrates to rapidly focus dispersed FL sample bands. Here, we demonstrate the focusing of FL from a dispersed band into narrow band with a 400 times reduction in sample width over 90 s. Owing to the simplicity and reproducibility of the developed approach, textile-based inverted microfluidic applications are expected to enable opportunities in bioanalysis, proteomics, and rapid clinical diagnostics.
Collapse
Affiliation(s)
- Jawairia Umar Khan
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2500, Australia
- Department of Fibre and Textile Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sepidar Sayyar
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2500, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility-Materials Node, Innovation Campus, University of Wollongong, Wollongong, New South Wales 2500, Australia
| |
Collapse
|
8
|
Cabot JM, Daikuara LY, Yue Z, Hayes P, Liu X, Wallace GG, Paull B. Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. Sci Rep 2020; 10:7120. [PMID: 32345999 PMCID: PMC7188853 DOI: 10.1038/s41598-020-63785-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
The delivery of bioactive molecules (drugs) with control over spatial distribution remains a challenge. Herein, we demonstrate for the first time an electrofluidic approach to controlled delivery into soft tissue models based on gelatin methacryloyl (GelMA) hydrogels. This was achieved using a surgical suture, whereby transport of bioactive molecules, including drugs and proteins, was controlled by imposition of an electric field. Commonly employed surgical sutures or acrylic threads were integrated through the hydrogels to facilitate the directed introduction of bioactive species. The platform consisted of two reservoirs into which the ends of the thread were immersed. The anode and cathode were placed separately into each reservoir. The thread was taken from one reservoir to the other through the gel. When current was applied, biomolecules loaded onto the thread were directed into the gel. Under the same conditions, the rate of movement of the biomolecules along GelMA was dependent on the magnitude of the current. Using 5% GelMA and a current of 100 µA, 2 uL of fluorescein travelled through the hydrogel at a constant velocity of 7.17 ± 0.50 um/s and took less than 8 minutes to exit on the thread. Small molecules such as riboflavin migrated faster (5.99 ± 0.40 μm/s) than larger molecules such as dextran (2.26 ± 0.55 μm/s with 4 kDa) or BSA (0.33 ± 0.07 μm/s with 66.5 kDa). A number of commercial surgical sutures were tested and found to accommodate the controlled movement of biomolecules. Polyester, polyglactin 910, glycolide/lactide copolymer and polyglycolic acid braided sutures created adequate fluid connection between the electrodes and the hydrogel. With a view to application in skin inflammatory diseases and wound treatment, wound healing, slow and controlled delivery of dexamethasone 21-phosphate disodium salt (DSP), an anti-inflammatory prodrug, was achieved using medical surgicryl PGA absorbable suture. After 2 hours of electrical stimulation, still 81.1% of the drug loaded was encapsulated within the hydrogel.
Collapse
Affiliation(s)
- Joan M Cabot
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania, TAS 7005, Australia
| | - Luciana Y Daikuara
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Patricia Hayes
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania, TAS 7005, Australia.
| |
Collapse
|
9
|
A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
|
11
|
Weng X, Kang Y, Guo Q, Peng B, Jiang H. Recent advances in thread-based microfluidics for diagnostic applications. Biosens Bioelectron 2019; 132:171-185. [PMID: 30875629 PMCID: PMC7127036 DOI: 10.1016/j.bios.2019.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Over the past decades, researchers have been seeking attractive substrate materials to keep microfluidics improving to outbalance the drawbacks and issues. Cellulose substrates, including thread, paper and hydrogels are alternatives due to their distinct structural and mechanical properties for a number of applications. Thread have gained considerable attention and become promising powerful tool due to its advantages over paper-based systems thus finds numerous applications in the development of diagnostic systems, smart bandages and tissue engineering. To the best of our knowledge, no comprehensive review articles on the topic of thread-based microfluidics have been published and it is of significance for many scientific communities working on Microfluidics, Biosensors and Lab-on-Chip. This review gives an overview of the advances of thread-based microfluidic diagnostic devices in a variety of applications. It begins with an overall introduction of the fabrication followed by an in-depth review on the detection techniques in such devices and various applications with respect to effort and performance to date. A few perspective directions of thread-based microfluidics in its development are also discussed. Thread-based microfluidics are still at an early development stage and further improvements in terms of fabrication, analytical strategies, and function to become low-cost, low-volume and easy-to-use point-of-care (POC) diagnostic devices that can be adapted or commercialized for real world applications.
Collapse
Affiliation(s)
- Xuan Weng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Qian Guo
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Hai Jiang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
| |
Collapse
|
12
|
Farajikhah S, Cabot JM, Innis PC, Paull B, Wallace G. Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS COMBINATORIAL SCIENCE 2019; 21:229-240. [PMID: 30640423 DOI: 10.1021/acscombsci.8b00126] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel approaches that incorporate electrofluidic and microfluidic technologies are reviewed to illustrate the translation of traditional enclosed structures into open and accessible textile based platforms. Through the utilization of on-fiber and on-textile microfluidics, it is possible to invert the typical enclosed capillary column or microfluidic "chip" platform, to achieve surface accessible efficient separations and fluid handling, while maintaining a microfluidic environment. The open fiber/textile based fluidics approach immediately provides new possibilities to interrogate, manipulate, redirect, extract, characterize, and quantify solutes and target species at any point in time during such processes as on-fiber electrodriven separations. This approach is revolutionary in its simplicity and provides many potential advantages not otherwise afforded by the more traditional enclosed platforms.
Collapse
Affiliation(s)
- Syamak Farajikhah
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
| | - Joan M. Cabot
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania 7005, Australia
| | - Peter C. Innis
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility − Materials Node, Innovation Campus, University of Wollongong, New South Wales 2522, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS) and ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, Faculty of Chemistry, University of Tasmania, Tasmania 7005, Australia
| | - Gordon Wallace
- ARC Centre of Excellence in Electromaterials Science (ACES), AIIM Facility, Innovation Campus, University of Wollongong, New South Wales 2500, Australia
- Australian National Fabrication Facility − Materials Node, Innovation Campus, University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
13
|
Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. LAB ON A CHIP 2019; 19:369-386. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancer is the leading cause of death worldwide. The complex and disorganized tumor microenvironment makes it very difficult to treat this disease. The most common in vitro drug screening method now is based on 2D culture models which poorly represent actual tumors. Therefore, many 3D tumor models which are more physiologically relevant have been developed to conduct in vitro drug screening and alleviate this situation. Among all these models, the microfluidic tumor model has the unique advantage of recapitulating the tumor microenvironment in a comparatively easier and representative fashion. While there are many review papers available on the related topic of microfluidic tumor models, in this review we aim to focus more on the possibility of generating "clinically actionable information" from these microfluidic systems, besides scientific insight. Our topics cover the tumor microenvironment, conventional 2D and 3D cultures, animal models, and microfluidic tumor models, emphasizing their link to anti-cancer drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Menglin Shang
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1, Create Way, Enterprise Wing, 138602, Singapore.
| | | | | | | | | |
Collapse
|
14
|
Design keys for paper-based concentration gradient generators. J Chromatogr A 2018; 1561:83-91. [DOI: 10.1016/j.chroma.2018.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 11/19/2022]
|
15
|
Song J, Zhang Y, Zhang C, Du X, Guo Z, Kuang Y, Wang Y, Wu P, Zou K, Zou L, Lv J, Wang Q. A microfluidic device for studying chemotaxis mechanism of bacterial cancer targeting. Sci Rep 2018; 8:6394. [PMID: 29686328 PMCID: PMC5913277 DOI: 10.1038/s41598-018-24748-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 04/10/2018] [Indexed: 02/05/2023] Open
Abstract
Bacterial cancer targeting may become an efficacious cancer therapy, but the mechanisms underlying bacterial specificity for cancer cells need to be explored prior to adopting it as a new clinical application. To characterize the mechanism of bacterial chemotactic preference towards cancer cells, we developed a microfluidic device for in vitro study. The device consists of a cell culture chamber on both sides of a central bacteria channel, with micro-channels used as barriers between them. The device, when used as model for lung cancer, was able to provide simultaneous three-dimensional co-culture of multiple cell lines in separate culture chambers, and when used as model for bacterial chemotaxis, established constant concentration gradients of biochemical compounds in a central channel by diffusion through micro-channels. Fluorescence intensity of green fluorescence protein (GFP)-encoding bacteria was used to measure bacterial taxis behavior due to established chemotactic gradients. Using this platform, we found that Escherichia coli (E. coli) clearly illustrated the preference for lung cancer cells (NCI-H460) which was attributed to biochemical factors secreted by carcinoma cells. Furthermore, by secretome analysis and validation experiments, clusterin (CLU) was found as a key regulator for the chemotaxis of E. coli in targeting lung cancer.
Collapse
Affiliation(s)
- Jing Song
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Radiotherapy, The Second Hospital, Dalian Medical University, Dalian, China
| | - Chengqian Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China
| | - Zhe Guo
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
- Department of Respiratory Medicine, The first Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Yingyan Wang
- Laboratory Center for Diagnostics, Dalian Medical University, Dalian, China
| | - Peng Wu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital, Dalian Medical University, Dalian, China
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Jianxin Lv
- Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
16
|
Cabot JM, Breadmore MC, Paull B. Thread based electrofluidic platform for direct metabolite analysis in complex samples. Anal Chim Acta 2018; 1000:283-292. [DOI: 10.1016/j.aca.2017.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 11/25/2022]
|
17
|
Rezk AR, Ramesan S, Yeo LY. Plug-and-actuate on demand: multimodal individual addressability of microarray plates using modular hybrid acoustic wave technology. LAB ON A CHIP 2018; 18:406-411. [PMID: 29231220 DOI: 10.1039/c7lc01099k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The microarray titre plate remains a fundamental workhorse in genomic, proteomic and cellomic analyses that underpin the drug discovery process. Nevertheless, liquid handling technologies for sample dispensing, processing and transfer have not progressed significantly beyond conventional robotic micropipetting techniques, which are not only at their fundamental sample size limit, but are also prone to mechanical failure and contamination. This is because alternative technologies to date suffer from a number of constraints, mainly their limitation to carry out only a single liquid operation such as dispensing or mixing at a given time, and their inability to address individual wells, particularly at high throughput. Here, we demonstrate the possibility for true sequential or simultaneous single- and multi-well addressability in a 96-well plate using a reconfigurable modular platform from which MHz-order hybrid surface and bulk acoustic waves can be coupled to drive a variety of microfluidic modes including mixing, sample preconcentration and droplet jetting/ejection in individual or multiple wells on demand, thus constituting a highly versatile yet simple setup capable of improving the functionality of existing laboratory protocols and processes.
Collapse
Affiliation(s)
- Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
18
|
Smith Callahan LA. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications. High Throughput 2018; 7:E1. [PMID: 29485612 PMCID: PMC5876527 DOI: 10.3390/ht7010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/15/2022] Open
Abstract
Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell-hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell-hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior.
Collapse
Affiliation(s)
- Laura A Smith Callahan
- The Vivian L. Smith Department of Neurosurgery, Center for Stem Cell & Regenerative Medicine, and Department of Nanomedicine and Biomedical Engineering, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Lee SJ, Kim J, Kim H, Ryu J. Enhancement of plant leaf transpiration with effective use of surface acoustic waves: effect of wave frequency. RSC Adv 2018; 8:15141-15148. [PMID: 35541350 PMCID: PMC9080046 DOI: 10.1039/c8ra01873a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
Water transport in vascular plants provides remarkable opportunities for various engineering applications due to its highly efficient and powerless transportability. Several previous studies were conducted to regulate the biological responses of plants using noninvasive audible or ultrasound waves. However, the control mechanism of acoustic stimuli applied to plants has not been investigated yet. Thus, the practical application of these stimuli to real plants still exhibits technological limitations. This study experimentally investigated the effects of surface acoustic wave (SAW) frequency on plant transpiration to understand the acoustic-activated leaf transpiration and utilize the advantages of SAW. We captured consecutive images of the enhanced water transport in the test plant (Epipremnum aureum) by SAW at three different frequencies (10, 15, and 20 MHz). The dye solution at 15 MHz SAW presented the highest intensity value after 40 min of SAW stimulation. The excitation areas for 15 and 20 MHz SAWs were decreased to 42.3% and 22.6%, respectively, compared with that of 10 MHz SAW. The transpiration rates were directly measured to compare water transport enhancement quantitatively when different SAW frequencies were applied to the same plant leaves. The water transport in the leaves was maximized at 15 MHz SAW, regardless of excitation area. Plant leaf transpiration was enhanced with effective use of SAW activation. The effects on leaf transpiration enhancement were analyzed in detail. The results could be applied to regulate temperature and relative humidity effectively.![]()
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang
- South Korea
| | - Jeongju Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang
- South Korea
| | - Hyejeong Kim
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang
- South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering
- Pohang University of Science and Technology
- Pohang
- South Korea
| |
Collapse
|
20
|
Bipolar electrochemiluminescence on thread: A new class of electroanalytical sensors. Biosens Bioelectron 2017; 94:335-343. [DOI: 10.1016/j.bios.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/12/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
|
21
|
Go DB, Atashbar MZ, Ramshani Z, Chang HC. Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:4112-4134. [PMID: 29151901 PMCID: PMC5685524 DOI: 10.1039/c7ay00690j] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Surface acoustic waves (SAWs), are electro-mechanical waves that form on the surface of piezoelectric crystals. Because they are easy to construct and operate, SAW devices have proven to be versatile and powerful platforms for either direct chemical sensing or for upstream microfluidic processing and sample preparation. This review summarizes recent advances in the development of SAW devices for chemical sensing and analysis. The use of SAW techniques for chemical detection in both gaseous and liquid media is discussed, as well as recent fabrication advances that are pointing the way for the next generation of SAW sensors. Similarly, applications and progress in using SAW devices as microfluidic platforms are covered, ranging from atomization and mixing to new approaches to lysing and cell adhesion studies. Finally, potential new directions and perspectives on the field as it moves forward are offered, with a specific focus on potential strategies for making SAW technologies for bioanalytical applications.
Collapse
Affiliation(s)
- David B. Go
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Masood Z. Atashbar
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Zeinab Ramshani
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Electrical and Computer Engineering, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|