1
|
Wu Z, Han S, Meng H, Lian D, Wu T, Chu W, Li H, Ning M, Wang B, Gao X, Xu S, Ren J, Yang X. Investigation of piezoelectric printing devices for oil-free and on-demand picolitre monodisperse droplet generation. Sci Rep 2024; 14:17104. [PMID: 39048610 PMCID: PMC11269629 DOI: 10.1038/s41598-024-67849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Picolitre monodisperse droplet printing technology has important applications in biochemistry, such as accounting for quantitative analysis and single-cell analysis, and can be used for parallel high-throughput analysis of biomarkers and chemicals. However, commonly used droplet generation devices require complex control systems or customised microfluidic chips, making them costly and difficult for researchers to operate. Additionally, generating picolitre monodisperse droplets with microfluidic devices necessitates the introduction of an oil phase to block and separate the liquid. This requirement can reduce the throughput of the target droplets and cause cell contamination, hindering the adoption of this technology. By employing a common 1-mm-diameter capillary in the laboratory in combination with a piezoelectric transducer, we have achieved on-demand picolitre droplet printing of less than 100 pL in an oil-free environment. The device was found to be biocompatible with K562 cells. This approach is less costly, offers greater operational freedom, and is easier to integrate with other downstream assay modules or even handheld cell-printing devices. This study holds great potential for application in areas such as single-cell analysis, cell sampling, and pharmaceutical analysis.
Collapse
Affiliation(s)
- Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Shaoshuai Han
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Hu Meng
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Di Lian
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Tongfei Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Wenjie Chu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - He Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Mengting Ning
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Bingjie Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Xijing Gao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Shizhao Xu
- Dalian Municipal Central Hospital, Central Hospital of Dalian University of Technology, Dalian, 116024, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xin Yang
- Department of Electrical and Electronics Engineering, School of Engineering, Cardiff University, Cardiff, CF10 3AT, UK
| |
Collapse
|
2
|
Yang W, Hou L, Luo C. When Super-Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207341. [PMID: 36895074 DOI: 10.1002/smll.202207341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
Super-resolution microscopy is rapidly developed in recent years, allowing biologists to extract more quantitative information on subcellular processes in live cells that is usually not accessible with conventional techniques. However, super-resolution imaging is not fully exploited because of the lack of an appropriate and multifunctional experimental platform. As an important tool in life sciences, microfluidics is capable of cell manipulation and the regulation of the cellular environment because of its superior flexibility and biocompatibility. The combination of microfluidics and super-resolution microscopy revolutionizes the study of complex cellular properties and dynamics, providing valuable insights into cellular structure and biological functions at the single-molecule level. In this perspective, an overview of the main advantages of microfluidic technology that are essential to the performance of super-resolution microscopy are offered. The main benefits of performing super-resolution imaging with microfluidic devices are highlighted and perspectives on the diverse applications that are facilitated by combining these two powerful techniques are provided.
Collapse
Affiliation(s)
- Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
| | - Lei Hou
- UMR5298-LP2N, Institut d'Optique and CNRS, Rue François Mitterrand, Talence, 33400, France
| | - Chunxiong Luo
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, 5 Summer Palace Road, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Summer Palace Road, Beijing, 100871, China
| |
Collapse
|
3
|
Chen H, Meng H, Chen Z, Wang T, Chen C, Zhu Y, Jin J. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics. BIOSENSORS 2022; 12:1100. [PMID: 36551067 PMCID: PMC9775143 DOI: 10.3390/bios12121100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 μm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong, China
| | - Tong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| |
Collapse
|
4
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
5
|
Babahosseini H, Wangsa D, Pabba M, Ried T, Misteli T, DeVoe DL. Deterministic assembly of chromosome ensembles in a programmable membrane trap array. Biofabrication 2021; 13:10.1088/1758-5090/ac1258. [PMID: 34233304 PMCID: PMC9974010 DOI: 10.1088/1758-5090/ac1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022]
Abstract
Selective spatial isolation and manipulation of single chromosomes and the controlled formation of defined chromosome ensembles in a droplet-based microfluidic system is presented. The multifunctional microfluidic technology employs elastomer valves and membrane displacement traps to support deterministic manipulation of individual droplets. Picoliter droplets are formed in the 2D array of microscale traps by self-discretization of a nanoliter sample plug, with membranes positioned over each trap allowing controllable metering or full release of selected droplets. By combining discretization, optical interrogation, and selective droplet release for sequential delivery to a downstream merging zone, the system enables efficient manipulation of multiple chromosomes into a defined ensemble with single macromolecule resolution. Key design and operational parameters are explored, and co-compartmentalization of three chromosome pairs is demonstrated as a first step toward formation of precisely defined chromosome ensembles for applications in genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hesam Babahosseini
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America,Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Darawalee Wangsa
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mani Pabba
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| | - Thomas Ried
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
6
|
Zhang P, Wang W, Fu H, Rich J, Su X, Bachman H, Xia J, Zhang J, Zhao S, Zhou J, Huang TJ. Deterministic droplet coding via acoustofluidics. LAB ON A CHIP 2020; 20:4466-4473. [PMID: 33103674 PMCID: PMC7688411 DOI: 10.1039/d0lc00538j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics has become an indispensable tool for biomedical research and lab-on-a-chip applications owing to its unprecedented throughput, precision, and cost-effectiveness. Although droplets can be generated and screened in a high-throughput manner, the inability to label the inordinate amounts of droplets hinders identifying the individual droplets after generation. Herein, we demonstrate an acoustofluidic platform that enables on-demand, real-time dispensing, and deterministic coding of droplets based on their volumes. By dynamically splitting the aqueous flow using an oil jet triggered by focused traveling surface acoustic waves, a sequence of droplets with deterministic volumes can be continuously dispensed at a throughput of 100 Hz. These sequences encode barcoding information through the combination of various droplet lengths. As a proof-of-concept, we encoded droplet sequences into end-to-end packages (e.g., a series of 50 droplets), which consisted of an address barcode with binary volumetric combinations and a sample package with consistent volumes for hosting analytes. This acoustofluidics-based, deterministic droplet coding technique enables the tagging of droplets with high capacity and high error-tolerance, and can potentially benefit various applications involving single cell phenotyping and multiplexed screening.
Collapse
Affiliation(s)
- Peiran Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Wei Wang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
- ASIC and System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, P. R. China
| | - Hai Fu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
- Department of Fluid Control and Automation, School of Mechanics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Xingyu Su
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Jinxin Zhang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Shuaiguo Zhao
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Jia Zhou
- ASIC and System State Key Laboratory, School of Microelectronics, Fudan University, Shanghai 200433, P. R. China
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
|
8
|
Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device. Anal Chem 2020; 92:10733-10742. [DOI: 10.1021/acs.analchem.0c02006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Prangemeier T, Lehr FX, Schoeman RM, Koeppl H. Microfluidic platforms for the dynamic characterisation of synthetic circuitry. Curr Opin Biotechnol 2020; 63:167-176. [PMID: 32172160 DOI: 10.1016/j.copbio.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
Abstract
Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts.
Collapse
Affiliation(s)
- Tim Prangemeier
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - François-Xavier Lehr
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Rogier M Schoeman
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Heinz Koeppl
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany.
| |
Collapse
|
10
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
11
|
Chen K, Sui C, Wu Y, Ao Z, Guo SS, Guo F. A digital acoustofluidic device for on-demand and oil-free droplet generation. NANOTECHNOLOGY 2019; 30:084001. [PMID: 30523921 DOI: 10.1088/1361-6528/aaf3fd] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a digital acoustofluidic device for on-demand and oil-free droplet generation. By applying a programmed radio frequency signal to a circular interdigital transducer, the dynamic focused acoustic pressure profiles generated rise up and dispense sample liquids from a reservoir to dynamically eject the droplets into the air. Our device allows droplets to be dispensed on demand with precisely controlled generation time and sequence, and accurate droplet volume. Moreover, we also demonstrate the generation of a droplet with a volume of 24 pL within 10 ms, as well as the encapsulation of a single cell into droplets. This acoustofluidic droplet generation technique is simple, biocompatible, and enables the on-demand droplet generation and encapsulation of many different biological materials with precise control, which is promising for single cell sampling and analysis applications.
Collapse
Affiliation(s)
- Keke Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Wu S, Jeffet J, Grunwald A, Sharim H, Gilat N, Torchinsky D, Zheng Q, Zirkin S, Xu L, Ebenstein Y. Microfluidic DNA combing for parallel single-molecule analysis. NANOTECHNOLOGY 2019; 30:045101. [PMID: 30485249 DOI: 10.1088/1361-6528/aaeddc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA combing is a widely used method for stretching and immobilising DNA molecules on a surface. Fluorescent labelling of genomic information enables high-resolution optical analysis of DNA at the single-molecule level. Despite its simplicity, the application of DNA combing in diagnostic workflows is still limited, mainly due to difficulties in analysing multiple small-volume DNA samples in parallel. Here, we report a simple and versatile microfluidic DNA combing technology (μDC), which allows manipulating, stretching and imaging of multiple, microliter scale DNA samples by employing a manifold of parallel microfluidic channels. Using DNA molecules with repetitive units as molecular rulers, we demonstrate that the μDC technology allows uniform stretching of DNA molecules. The stretching ratio remains consistent along individual molecules as well as between different molecules in the various channels, allowing simultaneous quantitative analysis of different samples loaded into parallel channels. Furthermore, we demonstrate the application of μDC to characterise UVB-induced DNA damage levels in human embryonic kidney cells and the spatial correlation between DNA damage sites. Our results point out the potential application of μDC for quantitative and comparative single-molecule studies of genomic features. The extremely simple design of μDC makes it suitable for integration into other microfluidic platforms to facilitate high-throughput DNA analysis in biological research and medical point-of-care applications.
Collapse
Affiliation(s)
- Shuyi Wu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Campbell JM, Balhoff JB, Landwehr GM, Rahman SM, Vaithiyanathan M, Melvin AT. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int J Mol Sci 2018; 19:E2731. [PMID: 30213089 PMCID: PMC6164778 DOI: 10.3390/ijms19092731] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in microfluidic devices, nanoparticle chemistry, fluorescent microscopy, and biochemical techniques such as genetic identification and antibody capture have provided easier and more sensitive platforms for detecting and diagnosing diseases as well as providing new fundamental insight into disease progression. These advancements have led to the development of new technology and assays capable of easy and early detection of pathogenicity as well as the enhancement of the drug discovery and development pipeline. While some studies have focused on treatment, many of these technologies have found initial success in laboratories as a precursor for clinical applications. This review highlights the current and future progress of microfluidic techniques geared toward the timely and inexpensive diagnosis of disease including technologies aimed at high-throughput single cell analysis for drug development. It also summarizes novel microfluidic approaches to characterize fundamental cellular behavior and heterogeneity.
Collapse
Affiliation(s)
- Joshua M Campbell
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Joseph B Balhoff
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Grant M Landwehr
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
14
|
Jeong SG, Jeong JH, Kang KK, Jin SH, Lee B, Choi CH, Lee CS. Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Zhu XD, Chu J, Wang YH. Advances in Microfluidics Applied to Single Cell Operation. Biotechnol J 2018; 13. [DOI: 10.1002/biot.201700416] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xu-Dong Zhu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Ju Chu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yong-Hong Wang
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
16
|
Jin SH, Lee SS, Lee B, Jeong SG, Peter M, Lee CS. Programmable Static Droplet Array for the Analysis of Cell–Cell Communication in a Confined Microenvironment. Anal Chem 2017; 89:9722-9729. [DOI: 10.1021/acs.analchem.7b01462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si Hyung Jin
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Byungjin Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Seong-Geun Jeong
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Chang-Soo Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
17
|
Walczuch K, Renze P, Ingensiep C, Degen R, Bui TP, Schnakenberg U, Bräunig P, Bui-Göbbels K. A new microfluidic device design for a defined positioning of neurons in vitro. BIOMICROFLUIDICS 2017; 11:044103. [PMID: 28794814 PMCID: PMC5507706 DOI: 10.1063/1.4993556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
A new triangle-shaped microfluidic channel system for defined cell trapping is presented. Different variants of the same basic geometry were produced to reveal the best fitting parameter combinations regarding efficiency and sensitivity. Variants with differences in the trap gap width and the inter-trap distance were analyzed in detail by Computational Fluid Dynamics simulations and in experiments with artificial beads of different sizes (30, 60, 80 μm). Simulation analysis of flow dynamics and pressure profiles revealed strongly reduced pressure conditions and balanced flow rates inside the microfluidic channels compared to commonly used systems with meandering channels. Quantitative experiments with beads showed very good trapping results in all channel types with slight variations due to geometrical differences. Highest efficiency in terms of fast trap filling and low particle loss was shown with channel types having a larger trap gap width (20 μm) and/or a larger inter-trap distance (400 μm). Here, experimental success was achieved in almost 85% to 100% of all cases. Particle loss appeared significantly more often with large beads than with small beads. A significantly reduced trapping efficiency of about 50% was determined by using narrow trap gaps and a small inter-trap distance in combination with large 80 μm beads. The combination of the same parameters with small and medium beads led to an only slight decrease in trapping efficiency (80%). All channel types were tested qualitatively with invertebrate neurons from the pond snail Lymnaea stagnalis. The systems were appropriate to trap those sensitive neurons and to keep their viability in the trapping area at the same time.
Collapse
Affiliation(s)
- Katharina Walczuch
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Peter Renze
- Institute of Energy and Drive Technologies, Hochschule Ulm, Eberhard-Finckh-Str. 11, 89075 Ulm, Germany
| | - Claudia Ingensiep
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Rudolf Degen
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Thanh Phong Bui
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
| | - Peter Bräunig
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Katrin Bui-Göbbels
- Institute of Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
18
|
Vervoort Y, Linares AG, Roncoroni M, Liu C, Steensels J, Verstrepen KJ. High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 2017; 46:120-125. [PMID: 28346890 DOI: 10.1016/j.copbio.2017.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
Abstract
Genetic engineering and screening of large number of cells or populations is a crucial bottleneck in today's systems biology and applied (micro)biology. Instead of using standard methods in bottles, flasks or 96-well plates, scientists are increasingly relying on high-throughput strategies that miniaturize their experiments to the nanoliter and picoliter scale and the single-cell level. In this review, we summarize different high-throughput system-wide genome engineering and screening strategies for microbes. More specifically, we will emphasize the use of multiplex automated genome evolution (MAGE) and CRISPR/Cas systems for high-throughput genome engineering and the application of (lab-on-chip) nanoreactors for high-throughput single-cell or population screening.
Collapse
Affiliation(s)
- Yannick Vervoort
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Alicia Gutiérrez Linares
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Chengxun Liu
- Imec Life Science Technologies, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Laboratory for Systems Biology, VIB Center for Microbiology, Gaston Geenslaan 1, B-3001 Leuven, Belgium; Laboratory for Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium.
| |
Collapse
|
19
|
Jo MC, Qin L. Microfluidic Platforms for Yeast-Based Aging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5787-5801. [PMID: 27717149 PMCID: PMC5554731 DOI: 10.1002/smll.201602006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|